Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows

We use a Grassmannian framework to define multi-component tau functions as expectation values of certain multi-component Fermi operators satisfying simple bilinear commutation relations on Clifford algebra. The tau functions contain both positive and negative flows and are shown to satisfy the 2n-co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2007
Hauptverfasser: Aratyn, H., van de Leur, J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2007
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147787
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows / H. Aratyn, J. van de Leur // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147787
record_format dspace
spelling Aratyn, H.
van de Leur, J.
2019-02-16T08:10:09Z
2019-02-16T08:10:09Z
2007
Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows / H. Aratyn, J. van de Leur // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 11E88; 17B67; 22E67; 37K10
https://nasplib.isofts.kiev.ua/handle/123456789/147787
We use a Grassmannian framework to define multi-component tau functions as expectation values of certain multi-component Fermi operators satisfying simple bilinear commutation relations on Clifford algebra. The tau functions contain both positive and negative flows and are shown to satisfy the 2n-component KP hierarchy. The hierarchy equations can be formulated in terms of pseudo-differential equations for n × n matrix wave functions derived in terms of tau functions. These equations are cast in form of Sato-Wilson relations. A reduction process leads to the AKNS, two-component Camassa-Holm and Cecotti-Vafa models and the formalism provides simple formulas for their solutions.
This paper is a contribution to the Vadim Kuznetsov Memorial Issue “Integrable Systems and Related Topics”. This work has been partially supported by the European Union through the FP6 Marie Curie RTN ENIGMA (Contract number MRTN-CT-2004-5652) and the European Science Foundation Program MISGAM.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows
spellingShingle Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows
Aratyn, H.
van de Leur, J.
title_short Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows
title_full Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows
title_fullStr Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows
title_full_unstemmed Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows
title_sort clifford algebra derivations of tau-functions for two-dimensional integrable models with positive and negative flows
author Aratyn, H.
van de Leur, J.
author_facet Aratyn, H.
van de Leur, J.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We use a Grassmannian framework to define multi-component tau functions as expectation values of certain multi-component Fermi operators satisfying simple bilinear commutation relations on Clifford algebra. The tau functions contain both positive and negative flows and are shown to satisfy the 2n-component KP hierarchy. The hierarchy equations can be formulated in terms of pseudo-differential equations for n × n matrix wave functions derived in terms of tau functions. These equations are cast in form of Sato-Wilson relations. A reduction process leads to the AKNS, two-component Camassa-Holm and Cecotti-Vafa models and the formalism provides simple formulas for their solutions.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147787
citation_txt Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows / H. Aratyn, J. van de Leur // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT aratynh cliffordalgebraderivationsoftaufunctionsfortwodimensionalintegrablemodelswithpositiveandnegativeflows
AT vandeleurj cliffordalgebraderivationsoftaufunctionsfortwodimensionalintegrablemodelswithpositiveandnegativeflows
first_indexed 2025-12-07T16:42:47Z
last_indexed 2025-12-07T16:42:47Z
_version_ 1850868516635279360