Quantum Super-Integrable Systems as Exactly Solvable Models

We consider some examples of quantum super-integrable systems and the associated nonlinear extensions of Lie algebras. The intimate relationship between super-integrability and exact solvability is illustrated. Eigenfunctions are constructed through the action of the commuting operators. Finite dime...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2007
Автор: Fordy, A.P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147791
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantum Super-Integrable Systems as Exactly Solvable Models / A.P. Fordy // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147791
record_format dspace
spelling Fordy, A.P.
2019-02-16T08:12:26Z
2019-02-16T08:12:26Z
2007
Quantum Super-Integrable Systems as Exactly Solvable Models / A.P. Fordy // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 35Q40; 70H06
https://nasplib.isofts.kiev.ua/handle/123456789/147791
We consider some examples of quantum super-integrable systems and the associated nonlinear extensions of Lie algebras. The intimate relationship between super-integrability and exact solvability is illustrated. Eigenfunctions are constructed through the action of the commuting operators. Finite dimensional representations of the quadratic algebras are thus constructed in a way analogous to that of the highest weight representations of Lie algebras.
This paper is a contribution to the Vadim Kuznetsov Memorial Issue “Integrable Systems and Related Topics”.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Quantum Super-Integrable Systems as Exactly Solvable Models
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Quantum Super-Integrable Systems as Exactly Solvable Models
spellingShingle Quantum Super-Integrable Systems as Exactly Solvable Models
Fordy, A.P.
title_short Quantum Super-Integrable Systems as Exactly Solvable Models
title_full Quantum Super-Integrable Systems as Exactly Solvable Models
title_fullStr Quantum Super-Integrable Systems as Exactly Solvable Models
title_full_unstemmed Quantum Super-Integrable Systems as Exactly Solvable Models
title_sort quantum super-integrable systems as exactly solvable models
author Fordy, A.P.
author_facet Fordy, A.P.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We consider some examples of quantum super-integrable systems and the associated nonlinear extensions of Lie algebras. The intimate relationship between super-integrability and exact solvability is illustrated. Eigenfunctions are constructed through the action of the commuting operators. Finite dimensional representations of the quadratic algebras are thus constructed in a way analogous to that of the highest weight representations of Lie algebras.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147791
citation_txt Quantum Super-Integrable Systems as Exactly Solvable Models / A.P. Fordy // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT fordyap quantumsuperintegrablesystemsasexactlysolvablemodels
first_indexed 2025-12-01T23:49:37Z
last_indexed 2025-12-01T23:49:37Z
_version_ 1850861201770151936