A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold
We review properties of so-called special conformal Killing tensors on a Riemannian manifold (Q,g) and the way they give rise to a Poisson-Nijenhuis structure on the tangent bundle TQ. We then address the question of generalizing this concept to a Finsler space, where the metric tensor field comes f...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2007 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2007
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/147793 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold / W. Sarlet // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | We review properties of so-called special conformal Killing tensors on a Riemannian manifold (Q,g) and the way they give rise to a Poisson-Nijenhuis structure on the tangent bundle TQ. We then address the question of generalizing this concept to a Finsler space, where the metric tensor field comes from a regular Lagrangian function E, homogeneous of degree two in the fibre coordinates on TQ. It is shown that when a symmetric type (1,1) tensor field K along the tangent bundle projection τ: TQ→ Q satisfies a differential condition which is similar to the defining relation of special conformal Killing tensors, there exists a direct recursive scheme again for first integrals of the geodesic spray. Involutivity of such integrals, unfortunately, remains an open problem.
Remove selected
|
|---|---|
| ISSN: | 1815-0659 |