The Virasoro Algebra and Some Exceptional Lie and Finite Groups

We describe a number of relationships between properties of the vacuum Verma module of a Virasoro algebra and the automorphism group of certain vertex operator algebras. These groups include the Deligne exceptional series of simple Lie groups and some exceptional finite simple groups including the M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2007
1. Verfasser: Tuite, M.P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2007
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147803
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Virasoro Algebra and Some Exceptional Lie and Finite Groups / M.P. Tuite // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147803
record_format dspace
spelling Tuite, M.P.
2019-02-16T08:30:49Z
2019-02-16T08:30:49Z
2007
The Virasoro Algebra and Some Exceptional Lie and Finite Groups / M.P. Tuite // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 17B68; 20D08; 17B69; 81R05; 81R10
https://nasplib.isofts.kiev.ua/handle/123456789/147803
We describe a number of relationships between properties of the vacuum Verma module of a Virasoro algebra and the automorphism group of certain vertex operator algebras. These groups include the Deligne exceptional series of simple Lie groups and some exceptional finite simple groups including the Monster and Baby Monster.
This paper is a contribution to the Proceedings of the O’Raifeartaigh Symposium on Non-Perturbative and Symmetry Methods in Field Theory (June 22–24, 2006, Budapest, Hungary). The author thanks A. Matsuo and G. Mason for very useful discussions and H. Maruoka, A. Matsuo and H. Shimakura for generously making Ref. available.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
The Virasoro Algebra and Some Exceptional Lie and Finite Groups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Virasoro Algebra and Some Exceptional Lie and Finite Groups
spellingShingle The Virasoro Algebra and Some Exceptional Lie and Finite Groups
Tuite, M.P.
title_short The Virasoro Algebra and Some Exceptional Lie and Finite Groups
title_full The Virasoro Algebra and Some Exceptional Lie and Finite Groups
title_fullStr The Virasoro Algebra and Some Exceptional Lie and Finite Groups
title_full_unstemmed The Virasoro Algebra and Some Exceptional Lie and Finite Groups
title_sort virasoro algebra and some exceptional lie and finite groups
author Tuite, M.P.
author_facet Tuite, M.P.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We describe a number of relationships between properties of the vacuum Verma module of a Virasoro algebra and the automorphism group of certain vertex operator algebras. These groups include the Deligne exceptional series of simple Lie groups and some exceptional finite simple groups including the Monster and Baby Monster.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147803
citation_txt The Virasoro Algebra and Some Exceptional Lie and Finite Groups / M.P. Tuite // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT tuitemp thevirasoroalgebraandsomeexceptionallieandfinitegroups
AT tuitemp virasoroalgebraandsomeexceptionallieandfinitegroups
first_indexed 2025-12-02T11:59:00Z
last_indexed 2025-12-02T11:59:00Z
_version_ 1850862470390874112