Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System

Bifibrations, in symplectic geometry called also dual pairs, play a relevant role in the theory of superintegrable Hamiltonian systems. We prove the existence of an analogous bifibrated geometry in dynamical systems with a symmetry group such that the reduced dynamics is periodic. The integrability...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2007
Автори: Fassò, F., Giacobbe, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147810
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System / F. Fassò, A. Giacobbe // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147810
record_format dspace
spelling Fassò, F.
Giacobbe, A.
2019-02-16T08:37:14Z
2019-02-16T08:37:14Z
2007
Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System / F. Fassò, A. Giacobbe // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 20 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 37J35; 70H33
https://nasplib.isofts.kiev.ua/handle/123456789/147810
Bifibrations, in symplectic geometry called also dual pairs, play a relevant role in the theory of superintegrable Hamiltonian systems. We prove the existence of an analogous bifibrated geometry in dynamical systems with a symmetry group such that the reduced dynamics is periodic. The integrability of such systems has been proven by M. Field and J. Hermans with a reconstruction technique. We apply the result to the nonholonomic system of a ball rolling on a surface of revolution.
This paper is a contribution to the Proceedings of the Workshop on Geometric Aspects of Integrable Systems (July 17–19, 2006, University of Coimbra, Portugal). The authors thank the Bernoulli Center (EPFL, Lausanne) for its hospitality during the 2004 program Geometric Mechanics and Its Applications, where the biggest part of this work was done, and Hans Duistermaat for some enlightening conversations on these topics.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System
spellingShingle Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System
Fassò, F.
Giacobbe, A.
title_short Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System
title_full Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System
title_fullStr Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System
title_full_unstemmed Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System
title_sort geometry of invariant tori of certain integrable systems with symmetry and an application to a nonholonomic system
author Fassò, F.
Giacobbe, A.
author_facet Fassò, F.
Giacobbe, A.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Bifibrations, in symplectic geometry called also dual pairs, play a relevant role in the theory of superintegrable Hamiltonian systems. We prove the existence of an analogous bifibrated geometry in dynamical systems with a symmetry group such that the reduced dynamics is periodic. The integrability of such systems has been proven by M. Field and J. Hermans with a reconstruction technique. We apply the result to the nonholonomic system of a ball rolling on a surface of revolution.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147810
citation_txt Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System / F. Fassò, A. Giacobbe // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 20 назв. — англ.
work_keys_str_mv AT fassof geometryofinvarianttoriofcertainintegrablesystemswithsymmetryandanapplicationtoanonholonomicsystem
AT giacobbea geometryofinvarianttoriofcertainintegrablesystemswithsymmetryandanapplicationtoanonholonomicsystem
first_indexed 2025-12-07T17:11:44Z
last_indexed 2025-12-07T17:11:44Z
_version_ 1850870338084143104