Lie Algebroids in Classical Mechanics and Optimal Control

We review some recent results on the theory of Lagrangian systems on Lie algebroids. In particular we consider the symplectic and variational formalism and we study reduction. Finally we also consider optimal control systems on Lie algebroids and we show how to reduce Pontryagin maximum principle.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2007
1. Verfasser: Martínez, E.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2007
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147813
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Lie Algebroids in Classical Mechanics and Optimal Control / E. Martínez // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147813
record_format dspace
spelling Martínez, E.
2019-02-16T08:39:09Z
2019-02-16T08:39:09Z
2007
Lie Algebroids in Classical Mechanics and Optimal Control / E. Martínez // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 25 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 49S05; 70H25; 22A22; 49J15
https://nasplib.isofts.kiev.ua/handle/123456789/147813
We review some recent results on the theory of Lagrangian systems on Lie algebroids. In particular we consider the symplectic and variational formalism and we study reduction. Finally we also consider optimal control systems on Lie algebroids and we show how to reduce Pontryagin maximum principle.
This paper is a contribution to the Proceedings of the Workshop on Geometric Aspects of Integrable Systems (July 17–19, 2006, University of Coimbra, Portugal). Partial financial support from MEC-DGI (Spain) grants BFM 2003-02532 and MTM2006-10531 is acknowledged.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Lie Algebroids in Classical Mechanics and Optimal Control
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Lie Algebroids in Classical Mechanics and Optimal Control
spellingShingle Lie Algebroids in Classical Mechanics and Optimal Control
Martínez, E.
title_short Lie Algebroids in Classical Mechanics and Optimal Control
title_full Lie Algebroids in Classical Mechanics and Optimal Control
title_fullStr Lie Algebroids in Classical Mechanics and Optimal Control
title_full_unstemmed Lie Algebroids in Classical Mechanics and Optimal Control
title_sort lie algebroids in classical mechanics and optimal control
author Martínez, E.
author_facet Martínez, E.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We review some recent results on the theory of Lagrangian systems on Lie algebroids. In particular we consider the symplectic and variational formalism and we study reduction. Finally we also consider optimal control systems on Lie algebroids and we show how to reduce Pontryagin maximum principle.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147813
citation_txt Lie Algebroids in Classical Mechanics and Optimal Control / E. Martínez // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 25 назв. — англ.
work_keys_str_mv AT martineze liealgebroidsinclassicalmechanicsandoptimalcontrol
first_indexed 2025-12-07T16:27:22Z
last_indexed 2025-12-07T16:27:22Z
_version_ 1850867546600767489