Density of Eigenvalues of Random Normal Matrices with an Arbitrary Potential, and of Generalized Normal Matrices

Following the works by Wiegmann-Zabrodin, Elbau-Felder, Hedenmalm-Makarov, and others, we consider the normal matrix model with an arbitrary potential function, and explain how the problem of finding the support domain for the asymptotic eigenvalue density of such matrices (when the size of the matr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
Hauptverfasser: Etingof, P., Ma, X.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2007
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147815
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Density of Eigenvalues of Random Normal Matrices with an Arbitrary Potential, and of Generalized Normal Matrices / P. Etingof, X. Ma // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Following the works by Wiegmann-Zabrodin, Elbau-Felder, Hedenmalm-Makarov, and others, we consider the normal matrix model with an arbitrary potential function, and explain how the problem of finding the support domain for the asymptotic eigenvalue density of such matrices (when the size of the matrices goes to infinity) is related to the problem of Hele-Shaw flows on curved surfaces, considered by Entov and the first author in 1990-s. In the case when the potential function is the sum of a rotationally invariant function and the real part of a polynomial of the complex coordinate, we use this relation and the conformal mapping method developed by Entov and the first author to find the shape of the support domain explicitly (up to finitely many undetermined parameters, which are to be found from a finite system of equations). In the case when the rotationally invariant function is βz2, this is done by Wiegmann-Zabrodin and Elbau-Felder. We apply our results to the generalized normal matrix model, which deals with random block matrices that give rise to *-representations of the deformed preprojective algebra of the affine quiver of type Âm-1. We show that this model is equivalent to the usual normal matrix model in the large N limit. Thus the conformal mapping method can be applied to find explicitly the support domain for the generalized normal matrix model.