Spectral Curves of Operators with Elliptic Coefficients
A computer-algebra aided method is carried out, for determining geometric objects associated to differential operators that satisfy the elliptic ansatz. This results in examples of Lamé curves with double reduction and in the explicit reduction of the theta function of a Halphen curve.
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2007 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2007
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/147818 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Spectral Curves of Operators with Elliptic Coefficients / J.C. Eilbeck, V.Z. Enolski, E. Previato // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 37 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147818 |
|---|---|
| record_format |
dspace |
| spelling |
Eilbeck, J.C. Enolski, V.Z. Previato, E. 2019-02-16T08:43:05Z 2019-02-16T08:43:05Z 2007 Spectral Curves of Operators with Elliptic Coefficients / J.C. Eilbeck, V.Z. Enolski, E. Previato // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 37 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 33E05; 34L10; 14H42; 14H45 https://nasplib.isofts.kiev.ua/handle/123456789/147818 A computer-algebra aided method is carried out, for determining geometric objects associated to differential operators that satisfy the elliptic ansatz. This results in examples of Lamé curves with double reduction and in the explicit reduction of the theta function of a Halphen curve. This paper is a contribution to the Vadim Kuznetsov Memorial Issue ‘Integrable Systems and Related Topics’. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Spectral Curves of Operators with Elliptic Coefficients Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Spectral Curves of Operators with Elliptic Coefficients |
| spellingShingle |
Spectral Curves of Operators with Elliptic Coefficients Eilbeck, J.C. Enolski, V.Z. Previato, E. |
| title_short |
Spectral Curves of Operators with Elliptic Coefficients |
| title_full |
Spectral Curves of Operators with Elliptic Coefficients |
| title_fullStr |
Spectral Curves of Operators with Elliptic Coefficients |
| title_full_unstemmed |
Spectral Curves of Operators with Elliptic Coefficients |
| title_sort |
spectral curves of operators with elliptic coefficients |
| author |
Eilbeck, J.C. Enolski, V.Z. Previato, E. |
| author_facet |
Eilbeck, J.C. Enolski, V.Z. Previato, E. |
| publishDate |
2007 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
A computer-algebra aided method is carried out, for determining geometric objects associated to differential operators that satisfy the elliptic ansatz. This results in examples of Lamé curves with double reduction and in the explicit reduction of the theta function of a Halphen curve.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147818 |
| citation_txt |
Spectral Curves of Operators with Elliptic Coefficients / J.C. Eilbeck, V.Z. Enolski, E. Previato // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 37 назв. — англ. |
| work_keys_str_mv |
AT eilbeckjc spectralcurvesofoperatorswithellipticcoefficients AT enolskivz spectralcurvesofoperatorswithellipticcoefficients AT previatoe spectralcurvesofoperatorswithellipticcoefficients |
| first_indexed |
2025-12-07T18:39:25Z |
| last_indexed |
2025-12-07T18:39:25Z |
| _version_ |
1850875854316371968 |