Hamiltonian Structure of PI Hierarchy

The string equation of type (2,2g+1) may be thought of as a higher order analogue of the first Painlevé equation that corresponds to the case of g = 1. For g > 1, this equation is accompanied with a finite set of commuting isomonodromic deformations, and they altogether form a hierarchy called th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2007
1. Verfasser: Takasaki, K.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2007
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147820
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Hamiltonian Structure of PI Hierarchy / K. Takasaki // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 41 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147820
record_format dspace
spelling Takasaki, K.
2019-02-16T08:51:28Z
2019-02-16T08:51:28Z
2007
Hamiltonian Structure of PI Hierarchy / K. Takasaki // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 41 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 34M55; 35Q53; 37K20
https://nasplib.isofts.kiev.ua/handle/123456789/147820
The string equation of type (2,2g+1) may be thought of as a higher order analogue of the first Painlevé equation that corresponds to the case of g = 1. For g > 1, this equation is accompanied with a finite set of commuting isomonodromic deformations, and they altogether form a hierarchy called the PI hierarchy. This hierarchy gives an isomonodromic analogue of the well known Mumford system. The Hamiltonian structure of the Lax equations can be formulated by the same Poisson structure as the Mumford system. A set of Darboux coordinates, which have been used for the Mumford system, can be introduced in this hierarchy as well. The equations of motion in these Darboux coordinates turn out to take a Hamiltonian form, but the Hamiltonians are different from the Hamiltonians of the Lax equations (except for the lowest one that corresponds to the string equation itself).
This paper is a contribution to the Vadim Kuznetsov Memorial Issue ‘Integrable Systems and Related Topics’. I would like to thank G. Falqui, E. Inoue and M. Mazzocco for valuable comments and discussions. This research was partially supported by Grant-in-Aid for Scientific Research No. 16340040 from the Japan Society for the Promotion of Science.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Hamiltonian Structure of PI Hierarchy
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Hamiltonian Structure of PI Hierarchy
spellingShingle Hamiltonian Structure of PI Hierarchy
Takasaki, K.
title_short Hamiltonian Structure of PI Hierarchy
title_full Hamiltonian Structure of PI Hierarchy
title_fullStr Hamiltonian Structure of PI Hierarchy
title_full_unstemmed Hamiltonian Structure of PI Hierarchy
title_sort hamiltonian structure of pi hierarchy
author Takasaki, K.
author_facet Takasaki, K.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The string equation of type (2,2g+1) may be thought of as a higher order analogue of the first Painlevé equation that corresponds to the case of g = 1. For g > 1, this equation is accompanied with a finite set of commuting isomonodromic deformations, and they altogether form a hierarchy called the PI hierarchy. This hierarchy gives an isomonodromic analogue of the well known Mumford system. The Hamiltonian structure of the Lax equations can be formulated by the same Poisson structure as the Mumford system. A set of Darboux coordinates, which have been used for the Mumford system, can be introduced in this hierarchy as well. The equations of motion in these Darboux coordinates turn out to take a Hamiltonian form, but the Hamiltonians are different from the Hamiltonians of the Lax equations (except for the lowest one that corresponds to the string equation itself).
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147820
citation_txt Hamiltonian Structure of PI Hierarchy / K. Takasaki // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 41 назв. — англ.
work_keys_str_mv AT takasakik hamiltonianstructureofpihierarchy
first_indexed 2025-12-01T10:10:13Z
last_indexed 2025-12-01T10:10:13Z
_version_ 1850859881270083584