Phase Space of Rolling Solutions of the Tippe Top

Equations of motion of an axially symmetric sphere rolling and sliding on a plane are usually taken as model of the tippe top. We study these equations in the nonsliding regime both in the vector notation and in the Euler angle variables when they admit three integrals of motion that are linear and...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2007
Автори: Glad, S.T., Petersson, D., Rauch-Wojciechowski, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147821
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Phase Space of Rolling Solutions of the Tippe Top / S.T. Glad, D. Petersson, S. Rauch-Wojciechowski // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147821
record_format dspace
spelling Glad, S.T.
Petersson, D.
Rauch-Wojciechowski, S.
2019-02-16T08:52:00Z
2019-02-16T08:52:00Z
2007
Phase Space of Rolling Solutions of the Tippe Top / S.T. Glad, D. Petersson, S. Rauch-Wojciechowski // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 14 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 70E18; 70E40; 70F25; 70K05
https://nasplib.isofts.kiev.ua/handle/123456789/147821
Equations of motion of an axially symmetric sphere rolling and sliding on a plane are usually taken as model of the tippe top. We study these equations in the nonsliding regime both in the vector notation and in the Euler angle variables when they admit three integrals of motion that are linear and quadratic in momenta. In the Euler angle variables (θ,φ,ψ) these integrals give separation equations that have the same structure as the equations of the Lagrange top. It makes it possible to describe the whole space of solutions by representing them in the space of parameters (D,λ,E) being constant values of the integrals of motion.
This paper is a contribution to the Vadim Kuznetsov Memorial Issue ‘Integrable Systems and Related Topics’. The authors would like to thank referees for useful suggestions and pointing some references.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Phase Space of Rolling Solutions of the Tippe Top
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Phase Space of Rolling Solutions of the Tippe Top
spellingShingle Phase Space of Rolling Solutions of the Tippe Top
Glad, S.T.
Petersson, D.
Rauch-Wojciechowski, S.
title_short Phase Space of Rolling Solutions of the Tippe Top
title_full Phase Space of Rolling Solutions of the Tippe Top
title_fullStr Phase Space of Rolling Solutions of the Tippe Top
title_full_unstemmed Phase Space of Rolling Solutions of the Tippe Top
title_sort phase space of rolling solutions of the tippe top
author Glad, S.T.
Petersson, D.
Rauch-Wojciechowski, S.
author_facet Glad, S.T.
Petersson, D.
Rauch-Wojciechowski, S.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Equations of motion of an axially symmetric sphere rolling and sliding on a plane are usually taken as model of the tippe top. We study these equations in the nonsliding regime both in the vector notation and in the Euler angle variables when they admit three integrals of motion that are linear and quadratic in momenta. In the Euler angle variables (θ,φ,ψ) these integrals give separation equations that have the same structure as the equations of the Lagrange top. It makes it possible to describe the whole space of solutions by representing them in the space of parameters (D,λ,E) being constant values of the integrals of motion.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147821
citation_txt Phase Space of Rolling Solutions of the Tippe Top / S.T. Glad, D. Petersson, S. Rauch-Wojciechowski // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT gladst phasespaceofrollingsolutionsofthetippetop
AT peterssond phasespaceofrollingsolutionsofthetippetop
AT rauchwojciechowskis phasespaceofrollingsolutionsofthetippetop
first_indexed 2025-12-07T13:22:50Z
last_indexed 2025-12-07T13:22:50Z
_version_ 1850855937100742656