Towards Finite-Gap Integration of the Inozemtsev Model
The Inozemtsev model is considered to be a multivaluable generalization of Heun's equation. We review results on Heun's equation, the elliptic Calogero-Moser-Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models.
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2007 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2007
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/147824 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Towards Finite-Gap Integration of the Inozemtsev Model / K. Takemura // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 49 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147824 |
|---|---|
| record_format |
dspace |
| spelling |
Takemura, K. 2019-02-16T08:53:51Z 2019-02-16T08:53:51Z 2007 Towards Finite-Gap Integration of the Inozemtsev Model / K. Takemura // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 49 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81R12; 33E10; 34M35 https://nasplib.isofts.kiev.ua/handle/123456789/147824 The Inozemtsev model is considered to be a multivaluable generalization of Heun's equation. We review results on Heun's equation, the elliptic Calogero-Moser-Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models. This paper is a contribution to the Vadim Kuznetsov Memorial Issue “Integrable Systems and Related Topics”. The author would like to thank the referees for valuable comments. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Towards Finite-Gap Integration of the Inozemtsev Model Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Towards Finite-Gap Integration of the Inozemtsev Model |
| spellingShingle |
Towards Finite-Gap Integration of the Inozemtsev Model Takemura, K. |
| title_short |
Towards Finite-Gap Integration of the Inozemtsev Model |
| title_full |
Towards Finite-Gap Integration of the Inozemtsev Model |
| title_fullStr |
Towards Finite-Gap Integration of the Inozemtsev Model |
| title_full_unstemmed |
Towards Finite-Gap Integration of the Inozemtsev Model |
| title_sort |
towards finite-gap integration of the inozemtsev model |
| author |
Takemura, K. |
| author_facet |
Takemura, K. |
| publishDate |
2007 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
The Inozemtsev model is considered to be a multivaluable generalization of Heun's equation. We review results on Heun's equation, the elliptic Calogero-Moser-Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147824 |
| citation_txt |
Towards Finite-Gap Integration of the Inozemtsev Model / K. Takemura // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 49 назв. — англ. |
| work_keys_str_mv |
AT takemurak towardsfinitegapintegrationoftheinozemtsevmodel |
| first_indexed |
2025-12-02T11:37:13Z |
| last_indexed |
2025-12-02T11:37:13Z |
| _version_ |
1850862339891396608 |