Towards Finite-Gap Integration of the Inozemtsev Model

The Inozemtsev model is considered to be a multivaluable generalization of Heun's equation. We review results on Heun's equation, the elliptic Calogero-Moser-Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models.

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2007
Автор: Takemura, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147824
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Towards Finite-Gap Integration of the Inozemtsev Model / K. Takemura // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 49 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147824
record_format dspace
spelling Takemura, K.
2019-02-16T08:53:51Z
2019-02-16T08:53:51Z
2007
Towards Finite-Gap Integration of the Inozemtsev Model / K. Takemura // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 49 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 81R12; 33E10; 34M35
https://nasplib.isofts.kiev.ua/handle/123456789/147824
The Inozemtsev model is considered to be a multivaluable generalization of Heun's equation. We review results on Heun's equation, the elliptic Calogero-Moser-Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models.
This paper is a contribution to the Vadim Kuznetsov Memorial Issue “Integrable Systems and Related Topics”. The author would like to thank the referees for valuable comments.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Towards Finite-Gap Integration of the Inozemtsev Model
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Towards Finite-Gap Integration of the Inozemtsev Model
spellingShingle Towards Finite-Gap Integration of the Inozemtsev Model
Takemura, K.
title_short Towards Finite-Gap Integration of the Inozemtsev Model
title_full Towards Finite-Gap Integration of the Inozemtsev Model
title_fullStr Towards Finite-Gap Integration of the Inozemtsev Model
title_full_unstemmed Towards Finite-Gap Integration of the Inozemtsev Model
title_sort towards finite-gap integration of the inozemtsev model
author Takemura, K.
author_facet Takemura, K.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The Inozemtsev model is considered to be a multivaluable generalization of Heun's equation. We review results on Heun's equation, the elliptic Calogero-Moser-Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147824
citation_txt Towards Finite-Gap Integration of the Inozemtsev Model / K. Takemura // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 49 назв. — англ.
work_keys_str_mv AT takemurak towardsfinitegapintegrationoftheinozemtsevmodel
first_indexed 2025-12-02T11:37:13Z
last_indexed 2025-12-02T11:37:13Z
_version_ 1850862339891396608