Towards Finite-Gap Integration of the Inozemtsev Model
The Inozemtsev model is considered to be a multivaluable generalization of Heun's equation. We review results on Heun's equation, the elliptic Calogero-Moser-Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models.
Saved in:
| Date: | 2007 |
|---|---|
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2007
|
| Series: | Symmetry, Integrability and Geometry: Methods and Applications |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/147824 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Towards Finite-Gap Integration of the Inozemtsev Model / K. Takemura // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 49 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147824 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1478242025-02-10T01:24:29Z Towards Finite-Gap Integration of the Inozemtsev Model Takemura, K. The Inozemtsev model is considered to be a multivaluable generalization of Heun's equation. We review results on Heun's equation, the elliptic Calogero-Moser-Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models. This paper is a contribution to the Vadim Kuznetsov Memorial Issue “Integrable Systems and Related Topics”. The author would like to thank the referees for valuable comments. 2007 Article Towards Finite-Gap Integration of the Inozemtsev Model / K. Takemura // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 49 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81R12; 33E10; 34M35 https://nasplib.isofts.kiev.ua/handle/123456789/147824 en Symmetry, Integrability and Geometry: Methods and Applications application/pdf Інститут математики НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| description |
The Inozemtsev model is considered to be a multivaluable generalization of Heun's equation. We review results on Heun's equation, the elliptic Calogero-Moser-Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models. |
| format |
Article |
| author |
Takemura, K. |
| spellingShingle |
Takemura, K. Towards Finite-Gap Integration of the Inozemtsev Model Symmetry, Integrability and Geometry: Methods and Applications |
| author_facet |
Takemura, K. |
| author_sort |
Takemura, K. |
| title |
Towards Finite-Gap Integration of the Inozemtsev Model |
| title_short |
Towards Finite-Gap Integration of the Inozemtsev Model |
| title_full |
Towards Finite-Gap Integration of the Inozemtsev Model |
| title_fullStr |
Towards Finite-Gap Integration of the Inozemtsev Model |
| title_full_unstemmed |
Towards Finite-Gap Integration of the Inozemtsev Model |
| title_sort |
towards finite-gap integration of the inozemtsev model |
| publisher |
Інститут математики НАН України |
| publishDate |
2007 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147824 |
| citation_txt |
Towards Finite-Gap Integration of the Inozemtsev Model / K. Takemura // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 49 назв. — англ. |
| series |
Symmetry, Integrability and Geometry: Methods and Applications |
| work_keys_str_mv |
AT takemurak towardsfinitegapintegrationoftheinozemtsevmodel |
| first_indexed |
2025-12-02T11:37:13Z |
| last_indexed |
2025-12-02T11:37:13Z |
| _version_ |
1850396306896322560 |
| fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 3 (2007), 038, 17 pages
Towards Finite-Gap Integration
of the Inozemtsev Model?
Kouichi TAKEMURA
Department of Mathematical Sciences, Yokohama City University,
22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
E-mail: takemura@yokohama-cu.ac.jp
Received October 31, 2006, in final form February 07, 2007; Published online March 02, 2007
Original article is available at http://www.emis.de/journals/SIGMA/2007/038/
Abstract. The Inozemtsev model is considered to be a multivaluable generalization of
Heun’s equation. We review results on Heun’s equation, the elliptic Calogero–Moser–Suther-
land model and the Inozemtsev model, and discuss some approaches to the finite-gap inte-
gration for multivariable models.
Key words: finite-gap integration; Inozemtsev model; Heun’s equation; Darboux transfor-
mation
2000 Mathematics Subject Classification: 81R12; 33E10; 34M35
1 Introduction
Differential equations defined on a complex domain frequently appear in mathematics and
physics. One of the most important differential equations is the Gauss hypergeometric differen-
tial equation. Mathematically, it is a standard form of the second-order differential equation
with three regular singularities on the Riemann sphere. Global properties of the solutions, i.e.,
the monodromy, often play decisive roles in applications to physics and mathematics.
A canonical form of a Fuchsian equation with four singularities is given by Heun’s equation
which is written as((
d
dw
)2
+
(
γ
w
+
δ
w − 1
+
ε
w − t
)
d
dw
+
αβw − q
w(w − 1)(w − t)
)
f̃(w) = 0, (1.1)
with the condition γ + δ + ε = α + β + 1. This equation appears in several topics in physics,
i.e., astrophysics, crystalline materials and so on (see [37] and references therein). Although the
problem of describing the monodromy of Heun’s equation is much more difficult than that of the
hypergeometric equation, Heun’s equation has been studied from several viewpoints. A method
of finite-gap integration is available on a study of Heun’s equation, and consequently we have
some formulae on the monodromy.
If there exists an odd-order differential operator A = (d/dx)2g+1 +
2g−1∑
j=0
bj(x) (d/dx)2g−1−j
such that [A,−d2/dx2 +q(x)] = 0, then q(x) is called the algebro-geometric finite-gap potential.
Note that the equation [A,−d2/dx2+q(x)] = 0 is equivalent to the function q(x) being a solution
to a stationary higher-order KdV equation (see [10]). In our setting, finite-gap integration is
a method for analysis of the operator −d2/dx2 + q(x) where q(x) is an algebro-geometric finite-
gap potential. Originally, the finite-gap property is a notion related to spectra. Let H be the
?This paper is a contribution to the Vadim Kuznetsov Memorial Issue “Integrable Systems and Related Topics”.
The full collection is available at http://www.emis.de/journals/SIGMA/kuznetsov.html
mailto:takemura@yokohama-cu.ac.jp
http://www.emis.de/journals/SIGMA/2007/038/
http://www.emis.de/journals/SIGMA/kuznetsov.html
2 K. Takemura
operator −d2/dx2 + q(x), and the set σb(H) be defined as follows:
E ∈ σb(H) ⇔ Every solution to (H − E)f(x) = 0 is bounded on x ∈ R.
If the closure of the set σb(H) can be written as
σb(H) = [E0, E1] ∪ [E2, E3] ∪ · · · ∪ [E2g,∞),
where E0 < E1 < · · · < E2g, i.e., the number of bounded bands is finite, then q(x) is called
the finite-gap potential. It was established in the 1970s that, under the assumption that q(x) is
a periodic, smooth, real function, the potential q(x) is finite-gap if and only if q(x) is algebro-
geometric finite-gap.
On the approach by the finite-gap integration for Heun’s equation, it is essential to transform
Heun’s equation into a form with the elliptic function. The transformed equation is written as
(H − E)f(x) =
(
− d2
dx2
+
3∑
i=0
li(li + 1)℘(x + ωi)− E
)
f(x) = 0, (1.2)
where ℘(x) is the Weierstrass ℘-function with periods (2ω1, 2ω3), ω0(= 0), ω1, ω2(= −ω1 − ω3),
ω3 are half-periods, and li (i = 0, 1, 2, 3) are coupling constants. Here the variables w and x
in equations (1.1), (1.2) are related by w = (℘(x)− ℘(ω1))/(℘(ω2)− ℘(ω1)). For details of the
transformation, see [34, 38, 43]. The expression in terms of the elliptic function was already
discovered in the 19th century, and some results which may relate to finite-gap integration were
found in that era. For the case when three of l0, l1, l2, l3 are equal to zero, equation (1.2)
is called Lamé’s equation. Ince [19] established in 1940 that if n ∈ Z≥1, ω1 ∈ R \ {0} and
ω3 ∈
√
−1R \ {0}, then the potential of Lamé’s operator
− d2
dx2
+ n(n + 1)℘(x + ω3),
is finite-gap. In the late 1980s, Treibich and Verdier [48] found that the method of finite-gap
integration is applicable for the case l0, l1, l2, l3 ∈ Z. Namely, they showed that the potential in
equation (1.2) is an algebro-geometric finite-gap potential if li ∈ Z for all i ∈ {0, 1, 2, 3}. There-
fore the potential
3∑
i=0
li(li + 1)℘(x + ωi) is called the Treibich–Verdier potential. Subsequently
several others [17, 38, 42, 44, 45, 46] have produced more precise statements and concerned
results on this subject. Namely, integral representations of solutions [38, 42], the Bethe Ansatz
[17, 42], the global monodromy in terms of the hyperelliptic integrals [44], the Hermite–Krichever
Ansatz [45] and a relationship with the Darboux transformation [46] were studied.
In this paper, we discuss some approaches to finite-gap integration for multivariable cases.
A multivariable generalization of Heun’s equation is given by the Inozemtsev model, which
is a generalization of the Calogero–Moser–Sutherland model. The Inozemtsev model of ty-
pe BCN [20] is a quantum mechanical system with N -particles whose Hamiltonian is given by
H = −
N∑
j=1
∂2
∂x2
j
+ 2l(l + 1)
∑
1≤j<k≤N
(℘(xj − xk) + ℘(xj + xk))
+
N∑
j=1
3∑
i=0
li(li + 1)℘(xj + ωi),
where l and li (i = 0, 1, 2, 3) are coupling constants. It is known that the Inozemtsev model
of type BCN is completely integrable. More precisely, there exist operators of the form Hk =
Towards Finite-Gap Integration of the Inozemtsev Model 3
N∑
j=1
(
∂
∂xj
)2k
+(lower terms) (k = 2, . . . , N) such that [H,Hk] = 0 and [Hk1 ,Hk2 ] = 0 (k, k1, k2 =
2, . . . , N). Note that the Inozemtsev model of type BCN is a universal completely integrable
model of quantum mechanics with BN symmetry, which follows from the classification due
to Ochiai, Oshima and Sekiguchi [30]. For the case N = 1, the potential coincides with the
Treibich–Verdier potential and the spectral problem for the Inozemtsev model of type BC1 is
equivalent to solving Heun’s equation.
By the trigonometric limit (τ(= ω3/ω1) →
√
−1∞), we obtain the trigonometric Calogero–
Moser–Sutherland model. The trigonometric model is well-studied by multivariable orthogo-
nal polynomials (i.e., the Jack polynomial and the multivariable Jacobi polynomial). Vadim
Kuznetsov and his collaborators studied multivariable orthogonal polynomials from the aspects
of separation of variables [25], the Pfaff lattice [1] and the Q operator [24]. Note that in the
paper [26] relationships among separation of variables, integral transformations and Lamé’s
(Heun’s) differential equation were discussed. Applications of these technique for models with
elliptic potentials are anticipated.
Although the Inozemtsev model of type BCN is much more difficult than the trigonometric
one, some approaches (perturbation from the trigonometric limit, quasi-solvability etc.) were
introduced. Now we hope to develop analysis of this model by finite-gap integration. Although
we can regard several works to be on this direction, in my opinion, they are still far from complete
understanding of the model. We may consider the multivariable Darboux transformation as
a possible approach, but we should develop it in the future.
This paper is organized as follows. In Section 2, we review the finite-gap integration of Heun’s
equation. An approach by the Darboux transformation is introduced. In Section 3, we collect
results on the Calogero–Moser–Sutherland model and the Inozemtsev model. In Section 4, we
discuss some approaches to finite-gap integration for those models.
2 Finite-gap integration of Heun’s equation
2.1 Darboux transformations and Heun’s equation
We consider the finite-gap property of Heun’s equation in the elliptic form. It is known that
the Treibich–Verdier potential is algebro-geometric finite-gap, i.e., there exists a differential
operator A of odd order which commutes with the operator H(l0,l1,l2,l3) where
H(l0,l1,l2,l3) = − d2
dx2
+
3∑
i=0
li(li + 1)℘(x + ωi). (2.1)
In this subsection, we construct an odd-order differential operator A by composing the Darboux–
Crum transformation which we will explain below.
We review the Darboux transformation. Let φ0(x) be an eigenfunction of the operator H =
−d2/dx2 + q(x) corresponding to an eigenvalue E0, i.e.(
− d2
dx2
+ q(x)
)
φ0(x) = E0φ0(x).
For this case, the potential q(x) is written as q(x) = (φ′0(x)/φ0(x))′ + (φ′0(x)/φ0(x))2 + E0.
By setting L = d/dx − φ′0(x)/φ0(x) and L† = −d/dx − φ′0(x)/φ0(x), we have the factorization
H − E0 = L†L. We set H̃ = LL† + E0. Then we have H̃ = −d2/dx2 + q(x) − 2(φ′0(x)/φ0(x))′
and the relation H̃L = LH. Hence, if φ(x) is an eigenfunction of the operator H corresponding
to the eigenvalue E, then Lφ(x) is an eigenfunction of the operator H̃ corresponding to the
eigenvalue E. This transformation is called the Darboux transformation. We generalize the
operator L to be the differential operator of higher order in the following proposition.
4 K. Takemura
Proposition 1 (cf. [3]). Suppose that the operator H = −d2/dx2 + q(x) preserves an n-dimen-
sional space U of functions. Let L be the monic differential operator of order n which annihilates
all functions in U , and write
L =
(
d
dx
)n
+
n∑
i=1
ci(x)
(
d
dx
)n−i
.
Set
H̃ = −d2/dx2 + q(x) + 2c′1(x).
Then we have
H̃L = LH.
We call the operator L in Proposition 1 the generalized Darboux transformation or the
Darboux–Crum transformation. For the case n = 1, let φ0(x) be a non-zero function in U , then
U = Cφ0(x), the operator which annihilates φ0(x) is given by L = d/dx − φ′0(x)/φ0(x) and
the operator H̃ is given by H̃ = H − 2(φ′0(x)/φ0(x))′. Hence the proposition reproduces the
Darboux transformation for the case n = 1.
We apply Proposition 1 to Heun’s equation. For this purpose, we recall the quasi-solvability of
Heun’s equation. If a finite-dimensional space is invariant under an action of the Hamiltonian H
of a model, the model is partially solvable by diagonalizing the matrix representation of H. This
situation is called quasi-solvable. On the quasi-solvability of Heun’s equation, we have
Proposition 2 ([43], Proposition 5.1). Let αi be a number such that αi = −li or αi = li + 1
for all i ∈ {0, 1, 2, 3}, and set d = −
3∑
i=0
αi/2. Suppose that d ∈ Z≥0, and let Vα0,α1,α2,α3 be the
d + 1-dimensional space spanned by{
Φ̂(℘(x))℘(x)n
}
n=0,...,d
,
where Φ̂(z) = (z − e1)α1/2(z − e2)α2/2(z − e3)α3/2. Then the operator H(l0,l1,l2,l3) (see equa-
tion (2.1)) preserves the space Vα0,α1,α2,α3.
By applying Propositions 1 and 2, we obtain the following proposition after some calculations:
Proposition 3 ([46]). Let αi be a number such that αi = −li or αi = li+1 for all i ∈ {0, 1, 2, 3},
and set d = −
3∑
i=0
αi/2. Suppose that d ∈ Z≥0, and let Lα0,α1,α2,α3 be the monic differential
operator of order d + 1 which annihilates the space Vα0,α1,α2,α3. Then we have
H(α0+d,α1+d,α2+d,α3+d)Lα0,α1,α2,α3 = Lα0,α1,α2,α3H
(l0,l1,l2,l3).
We construct an odd-degree differential operator A which commutes with H by composing
the operators Lα0,α1,α2,α3 . We define the operator L̃α0,α1,α2,α3 as follows:
L̃α0,α1,α2,α3 =
Lα0,α1,α2,α3 ,
3∑
i=0
αi/2 ∈ Z≤0;
L1−α0,1−α1,1−α2,1−α3 ,
3∑
i=0
αi/2 ∈ Z≥2;
1, otherwise.
Towards Finite-Gap Integration of the Inozemtsev Model 5
Set
le0 = (−l0 + l1 + l2 + l3)/2, le1 = (l0 − l1 + l2 + l3)/2,
le2 = (l0 + l1 − l2 + l3)/2, le3 = (l0 + l1 + l2 − l3)/2,
lo0 = (l0 + l1 + l2 + l3 + 1)/2, lo1 = (l0 + l1 − l2 − l3 − 1)/2,
lo2 = (l0 − l1 + l2 − l3 − 1)/2, lo3 = (l0 − l1 − l2 + l3 − 1)/2.
The following proposition is proved by applying Proposition 3 four times:
Proposition 4 ([46]). Assume li ∈ Z≥0 for i = 0, 1, 2, 3. If l0 + l1 + l2 + l3 is even, we set
A = L̃−le3,le2+1,le1+1,−le0
L̃−l1,l0+1,−l3,l2+1L̃−le0,−le1,le2+1,le3+1L̃−l0,−l1,−l2,−l3 , (2.2)
while if l0 + l1 + l2 + l3 is odd, we set
A = L̃lo2+1,−lo3,−lo0,−lo1
L̃−l1,−l0,l3+1,−l2L̃−lo0,lo1+1,−lo2,−lo3
L̃l0+1,−l1,−l2,−l3 . (2.3)
We then have that the operator A commutes with H(l0,l1,l2,l3), i.e.,
AH(l0,l1,l2,l3) = H(l0,l1,l2,l3)A.
It is known that, if l0, l1, l2, l3 ∈ Z≥0, then there exist four invariant spaces of the operator
H(l0,l1,l2,l3), which we consider in Section 2.3, and the four operators in Proposition 4 are related
to the four spaces.
Let ki be the rearrangement of li such that k0 ≥ k1 ≥ k2 ≥ k3(≥ 0). Set
g =
k0, l0 + l1 + l2 + l3 : even, k0 + k3 ≥ k1 + k2;
(k0 + k1 + k2 − k3)/2, l0 + l1 + l2 + l3 : even, k0 + k3 < k1 + k2;
k0, l0 + l1 + l2 + l3 : odd, k0 ≥ k1 + k2 + k3 + 1;
(k0 + k1 + k2 + k3 + 1)/2, l0 + l1 + l2 + l3 : odd, k0 < k1 + k2 + k3 + 1.
Then g ∈ Z≥0 and the degree of the operator A is 2g + 1.
For the case l0 = 2, l1 = l2 = l3 = 0, we have g = 2 and the operator A is expressed as
L2,−1,−1,0L1,−2,1,0L0,2,−1,−1L−2,0,0,0
=
(
d
dx
+
1
2
℘′(x)
℘(x)− e1
+
1
2
℘′(x)
℘(x)− e2
)(
d
dx
+
℘′(x)
℘(x)− e1
− 1
2
℘′(x)
℘(x)− e2
)
×
(
d
dx
− ℘′(x)
℘(x)− e1
+
1
2
℘′(x)
℘(x)− e2
+
1
2
℘′(x)
℘(x)− e3
)
×
((
d
dx
)2
− 1
2
(
℘′(x)
℘(x)− e1
+
℘′(x)
℘(x)− e2
+
℘′(x)
℘(x)− e3
)
d
dx
)
=
(
d
dx
)5
− 15℘(x)
(
d
dx
)3
− 45
2
℘′(x)
(
d
dx
)2
− 9
(
5℘(x)2 − 3
4
g2
)
d
dx
.
2.2 Application of finite-gap property
We investigate Heun’s equation in the elliptic form
(H − E) f(x) = 0, H = − d2
dx2
+ u(x), u(x) =
3∑
i=0
li(li + 1)℘(x + ωi), (2.4)
6 K. Takemura
by applying the finite-gap integration, which is based on the commutativity of H (= −d2/dx2 +
u(x)) and an odd-order differential operator A.
Since A is a monic differential operator of order 2g + 1, it can be expressed in the form
A = (−1)g
g∑
j=0
(
ãj(x)
d
dx
+ b̃j(x)
)
Hg−j ,
where ã0(x) = 1. We have
0 = [(−1)gA,H] =
g∑
j=0
[
ãj(x)
d
dx
+ b̃j(x),− d2
dx2
+ u(x)
]
Hg−j
=
g∑
j=0
(
ãj(x)u′(x) + 2ã′j(x)
d2
dx2
+ (ã′′j (x) + 2b̃′j(x))
d
dx
+ b̃′′j (x)
)
Hg−j
=
g∑
j=0
(
2ã′j(x)(−H + u(x)) + (ã′′j (x) + 2b̃′j(x))
d
dx
+ ãj(x)u′(x) + b̃′′j (x)
)
Hg−j
=
g∑
j=0
(
(ã′′j (x) + 2b̃′j(x))
d
dx
− 2ã′j+1(x) + 2ã′j(x)u(x) + ãj(x)u′(x) + b̃′′j (x)
)
Hg−j .
Hence we obtain
b̃j(x) = −ã′j(x)/2 + cj , ã′′′j (x)− 4u(x)ã′j(x) + 4ã′j+1(x)− 2u′(x)ãj(x) = 0
for some constants cj (j = 0, . . . , g). Therefore we have
Proposition 5. Set ã0(x) = 1 and ãg+1(x) = 0. The operator A may be expressed in the form
A = (−1)g
g∑
j=0
{
ãj(x)
d
dx
− 1
2
(
d
dx
ãj(x)
)}
Hg−j +
g∑
j=0
cjH
g−j
, (2.5)
for some functions ãj(x) (j = 1, . . . , g) and constants cj (j = 0, . . . , g), where the functions ãj(x)
(j = 0, . . . , g) satisfy
ã′′′j (x)− 4u(x)ã′j(x) + 4ã′j+1(x)− 2u′(x)ãj(x) = 0. (2.6)
We define a function Ξ(x,E) which plays the important role for the solutions and the mon-
odromy of Heun’s equation. Set
Ξ(x,E) =
g∑
i=0
ãg−i(x)Ei. (2.7)
It follows from equation (2.6) that Ξ(x,E) satisfies a differential equation satisfied by products
of any pair of the solutions to equation (2.4), i.e.,(
d3
dx3
− 4 (u(x)− E)
d
dx
− 2u′(x)
)
Ξ(x,E) = 0. (2.8)
On the basis of Proposition 5 and the function Ξ(x,E) in equation (2.7), we have
Towards Finite-Gap Integration of the Inozemtsev Model 7
Proposition 6 ([46]). (i) The constants cj (j = 1, . . . , g) in equation (2.5) are all zero.
(ii) The function Ξ(x, E) is even doubly-periodic and expressed as
Ξ(x,E) = c0(E) +
3∑
i=0
li−1∑
j=0
b
(i)
j (E)℘(x + ωi)li−j , (2.9)
where the coefficients c0(E) and b
(i)
j (E) are polynomials in E. The coefficients do not have com-
mon divisors and the polynomial c0(E) is monic. We have g = degE c0(E) and the coefficients
satisfy degE b
(i)
j (E) < g for all i and j.
For the case l0 = 2, l1 = l2 = l3 = 0, we have
Ξ(x,E) = E2 + 3E℘(x) + 9℘(x)2 − 9
4g2.
where ei = ℘(ωi) and g2 = −4(e1e2 + e2e3 + e3e1).
Note that the function Ξ(x,E) can be also obtained as the function satisfying equation (2.8)
and Proposition 6 (ii) (see [42]).
We can derive an integral formula for a solution to equation (2.4) in terms of the doubly
periodic function Ξ(x,E). Set
Q(E) = Ξ(x,E)2
(
E −
3∑
i=0
li(li + 1)℘(x + ωi)
)
+
1
2
Ξ(x,E)
d2Ξ(x, E)
dx2
− 1
4
(
dΞ(x,E)
dx
)2
. (2.10)
It is shown by differentiating the right-hand side of equation (2.10) and applying equation (2.8)
that Q(E) is independent of x. Thus Q(E) is a monic polynomial in E of degree 2g + 1,
which follows from the expression for Ξ(x,E) given by equation (2.9). For the case l0 = 2,
l1 = l2 = l3 = 0, we have
Q(E) = (E2 − 3g2)
3∏
i=1
(E − 3ei).
The following proposition on the integral representation of a solution to equation (2.4) was
obtained in [42]:
Proposition 7 ([42], Proposition 3.7). Let Ξ(x,E) be the doubly periodic function defined in
equation (2.7) and Q(E) be the monic polynomial defined in equation (2.10). Then the function
Λ(x,E) =
√
Ξ(x,E) exp
∫ √
−Q(E)dx
Ξ(x,E)
is a solution to the differential equation (2.4).
If the value E satisfies Q(E) 6= 0, then the functions Λ(x,E) and Λ(−x,E) form a basis of
solutions to equation (2.4). Since equation (2.4) is doubly-periodic, the functions Λ(x + 2ωk, E)
and Λ(−(x + 2ωk), E) are also solutions to equation (2.4). We consider the monodromy on the
functions Λ(x,E) and Λ(−x,E). Note that, if Λ(x + 2ωk, E) is expressed as B(E)Λ(x,E), then
Λ(−(x + 2ωk), E) is expressed as B(E)−1Λ(−x,E). We will express B(E) as a hyperelliptic
integral of second kind. We rewrite the function Ξ(x,E) and define a(E) as follows:
Ξ(x,E) = c(E) +
3∑
i=0
li−1∑
j=0
a
(i)
j (E)
(
d
dx
)2j
℘(x + ωi), a(E) =
3∑
i=0
a
(i)
0 (E).
8 K. Takemura
Proposition 8 ([44], Theorem 3.7). Assume li ∈ Z≥0 (i = 0, 1, 2, 3). Let E0 be a value such
that Q(E0) = 0. Then Λ(x + 2ωk, E0) = (−1)qkΛ(x,E0) for qk ∈ {0, 1} (k = 1, 3) and we have
Λ(x + 2ωk, E) = (−1)qkΛ(x, E) exp
−1
2
∫ E
E0
−2ηka(Ẽ) + 2ωkc(Ẽ)√
−Q(Ẽ)
dẼ
,
where ηk = ζ(ωk) (k = 1, 3) and ζ(x) is the Weierstrass zeta function.
For the case l0 = 2, l1 = l2 = l3 = 0, we set E0 =
√
3g2. Then q1 = q3 = 0 and the
function a(E) and c(E) are determined as
c(E) = E2 − 3
2g2, a0(E) = 3E.
Hence we have
Λ(x + 2ωk, E) = Λ(x,E) exp
−1
2
∫ E
√
3g2
−6Ẽηk + (2Ẽ2 − 3g2)ωk√
−(Ẽ2 − 3g2)
3∏
i=1
(Ẽ − 3ei)
dẼ
.
We review the propositions related with the Bethe Ansatz (Proposition 9) and the Hermite–
Krichever Ansatz (Proposition 10), which are also reductions of the finite-gap property.
Proposition 9 ([42], Theorem 3.12). (i) If the value E satisfies Q(E) 6= 0, then there exists
t1, . . . , tn and C such that tj 6= tj′ (j 6= j′), tj 6∈ ω1Z + ω3Z and Λ(x,E) is expressed as
Λ(x,E) = C
l∏
j=1
σ(x + tj)
σ(x)l0σ1(x)l1σ2(x)l2σ3(x)l3
exp
(
−x
l∑
i=1
ζ(tj)
)
, (2.11)
where σ(x) is the Weierstrass sigma function and σi(x) (i = 1, 2, 3) are the co-sigma functions
defined by
σi(z) = exp(−ηiz)σ(z + ωi)/σ(ωi).
(ii) The function
Λ̃(x) =
l∏
j=1
σ(x + tj)
σ(x)l0σ1(x)l1σ2(x)l2σ3(x)l3
exp(cx), (2.12)
with the condition tj 6= tj′ (j 6= j′) and tj 6∈ ω1Z + ω3Z is an eigenfunction of the operator H
(see equation (2.4)), if and only if tj (j = 1, . . . , l) and c satisfy the relations,
∑
k 6=j
ζ(−tj + tk)− l0ζ(−tj)−
3∑
i=1
li(ζ(−tj + ωi)− ζ(ωi)) = −c, (j = 1, . . . , l), (2.13)
(1− δl0,0)
c +
l∑
j=1
ζ(tj)
= 0,
(1− δli,0)
c + lζ(ωi) +
l∑
j=1
ζ(−ωi + tj)
= 0, (i = 1, 2, 3).
Towards Finite-Gap Integration of the Inozemtsev Model 9
The eigenvalue E is given by
E = −c2 + (l0l1 + l2l3)e1 + (l0l2 + l1l3)e2 + (l0l3 + l1l2)e3 −
3∑
i=1
liηi(2c + lηi)
−
l∑
j=1
3∑
i=0
li(℘(tj − ωi)− ζ(tj − ωi)2) +
∑
j<k
(℘(tj − tk)− ζ(tj − tk)2).
Equation (2.13) is called the Bethe Ansatz equation for the Inozemtsev model of type BC1
(see [42]). Note that Gesztesy and Weikard [17] obtained similar results. The monodromy of
the function Λ̃(x) in equation (2.12) is written as
Λ̃(x + 2ωk) = exp(2ηk(t1 + · · ·+ tl) + 2ωk(c− ζ(t1)− · · · − ζ(tl)))Λ̃(x)
for k = 1, 2, 3.
In order to describe the proposition on the Hermite–Krichever Ansatz, we define
Φi(x, α) =
σ(x + ωi − α)
σ(x + ωi)
exp(ζ(α)x), (i = 0, 1, 2, 3).
Proposition 10 ([45]). There exist polynomials P1(E), . . . , P6(E) such that, if P2(E) 6= 0,
then Λ(x,E) is written as
Λ(x,E) = exp (κx)
3∑
i=0
li−1∑
j=0
b̃
(i)
j
(
d
dx
)j
Φi(x, α)
(2.14)
for some values b̃
(i)
j (i = 0, . . . , 3, j = 0, . . . , li − 1), α and κ. The values α and κ are expressed
as
℘(α) =
P1(E)
P2(E)
, ℘′(α) =
P3(E)
P4(E)
√
−Q(E), κ =
P5(E)
P6(E)
√
−Q(E).
For the periodicity of the function Λ(x,E), we have
Λ(x + 2ωk, E) = exp(−2ηkα + 2ωkζ(α) + 2κωk)Λ(x,E)
for k = 1, 3.
Note that α in equation (2.14) and tj in equation (2.11) satisfy the relation α = −
l∑
j=1
tj . To
calculate the polynomials P1(E), . . . , P6(E), it is effective to apply the notions “twisted Heun
polynomial” and “theta-twisted Heun polynomial” (see [45]).
If l0 = 2, l1 = l2 = l3 = 0, then the values α and κ are expressed as
℘(α) = e1 −
(E − 3e1)(E + 6e1)2
9(E2 − 3g2)
, κ =
2
3(E2 − 3g2)
√
−Q(E).
2.3 Relationship among commuting operators
We review a relationship among the operators H, A, the polynomial Q(E) and the invariant
subspaces. On the operators H and A, we have the following relation:
10 K. Takemura
Proposition 11 ([44], Proposition 3.2). LetH andAbe the operators defined by equation (2.4)
and equations (2.2), (2.3), and Q(E) be the polynomial defined in equation (2.10). Then
A2 + Q(H) = 0.
It is known that, if l0, l1, l2, l3 ∈ Z≥0, then there exist four invariant subspaces with respect
to the action of the operator H. We describe the spaces more precisely. Let Vα0,α1,α2,α3 be the
space defined in Proposition 2 and
Uα0,α1,α2,α3 =
Vα0,α1,α2,α3 ,
3∑
i=0
αi/2 ∈ Z≤0;
V1−α0,1−α1,1−α2,1−α3 ,
3∑
i=0
αi/2 ∈ Z≥2;
{0}, otherwise.
If l0, l1, l2, l3 ∈ Z≥0 and l0 + l1 + l2 + l3 is even, then the operator H preserves the space
V = U−l0,−l1,−l2,−l3 ⊕ U−l0,−l1,l2+1,l3+1 ⊕ U−l0,l1+1,−l2,l3+1 ⊕ U−l0,l1+1,l2+1,−l3 , (2.15)
and also preserves the components in equation (2.15). If l0, l1, l2, l3 ∈ Z≥0 and l0 + l1 + l2 + l3
is odd, then the operator H preserves the space
V = U−l0,−l1,−l2,l3+1 ⊕ U−l0,−l1,l2+1,−l3 ⊕ U−l0,l1+1,−l2,−l3 ⊕ Ul0+1,−l1,−l2,−l3 , (2.16)
and also preserves the components in equation (2.16). Then we have
Proposition 12 ([46]). (i) The operator A annihilates any elements in the space V .
(ii) The monic characteristic polynomial of the space V with respect to the action of H
coincides with Q(E).
Note that the operator A was constructed by composing the generalized Darboux transfor-
mations which are related to the spaces in the components of equation (2.15) or equation (2.16).
3 Results on the Calogero–Moser–Sutherland model
and the Inozemtsev model
We are going to consider multidimensional generalizations of Lamé’s equation and Heun’s equa-
tion in the elliptic form. For this purpose, we introduce the quantum mechanical systems.
3.1 The elliptic Calogero–Moser–Sutherland model
The elliptic Calogero–Moser–Sutherland model (or the elliptic Olshanetsky–Perelomov mo-
del [31]) of type AN−1 is a quantum many-body system whose Hamiltonian is given as follows:
H = −1
2
N∑
i=1
∂2
∂x2
i
+ l(l + 1)
∑
1≤i<j≤N
℘(xi − xj),
where ℘(x) is the Weierstrass elliptic function. For the case N = 2, the model reproduces Lamé’s
equation by setting x1 − x2 = x and restricting to the line x1 + x2 = 0.
This model is known to be completely integrable, i.e., there exist N -algebraically independent
commuting operators Pk (k = 1, . . . , N) which commute with the Hamiltonian H. Namely, by
setting
Pk =
∑
0≤j≤[k/2]
(l(l + 1))j
2jj!(k − 2j)!
∑
σ∈SN
σ(℘(x1 − x2)℘(x3 − x4) · · ·
Towards Finite-Gap Integration of the Inozemtsev Model 11
× ℘(x2j−1 − x2j)∂2j+1∂2j+2 · · · ∂k), (3.1)
where SN is the symmetric group, [x] is the integral part of x and ∂i = ∂/∂xi, we have [Pk,H] = 0
(1 ≤ k ≤ N) and [Pk, Pk′ ] = 0 (1 ≤ k, k′ ≤ N) (see [30]). The Hamiltonian H is expressed as
H = P2 − P 2
1 /2.
By the trigonometric limit (τ →
√
−1∞) of the elliptic Calogero–Moser–Sutherland model
where (1, τ) is the basic periods of the elliptic function, we obtain (up to an additive scalar) the
Hamiltonian of the trigonometric Calogero–Moser–Sutherland model,
Htrig = −1
2
N∑
i=1
∂2
∂x2
i
+ π2l(l + 1)
∑
1≤i<j≤N
1
sin2(π(xi − xj))
.
The eigenstates of the Calogero–Sutherland model are described by the Jack polynomial
J
( 1
l+1
)
λ (X) (λ ∈MN ) (see [39]), i.e.,
Htrig(J
( 1
l+1
)
λ (X)∆(X)l+1) = (e0 + 2π2E
[ 1
l+1
]
λ )J
( 1
l+1
)
λ (X)∆(X)l+1,
where Xi = exp
(
2π
√
−1xi
)
, MN = {λ = (λ1, λ2, . . . , λN )|i > j ⇒ λi − λj ∈ Z≥0}, e0 =
1
6π2(l+1)2N(N2−1), ∆(X) = (X1X2 · · ·XN )
1−N
2
∏
i<j
(Xi−Xj) and E
[α]
λ =
N∑
i=1
λ2
i +
N∑
i=1
N+1−2i
α λi.
In particular, the ground-state is given by ∆(X)l+1. Several properties of the Jack polynomial
were studied. Vadim Kuznetsov and his collaborators studied the Jack polynomial and related
polynomials from the aspects of separation of variable [25], the Pfaff lattice [1] and the Q
operator [24].
In contrast with the trigonometric models, the elliptic models are less investigated and the
spectra or the eigenfunctions are not sufficiently analyzed. There is, however, some important
progress due to Felder and Varchenko. They introduced the Bethe Ansatz method for the N -
particle elliptic Calogero–Moser model with the coupling constant l a positive integer. Note
that Hermite essentially introduced the Bethe Ansatz method for the case N = 2 and l ∈ Z
(see [49]), and Dittrich and Inozemtsev [9] did it for the case N = 3 and l = 1 in a different
representation.
Fix the parameters N and l. We set m = lN(N−1)/2. Let c : {1, . . . ,m} → {1, . . . , N} be the
unique non-decreasing function such that c−1(j) has (N−j)l elements. Let εi (1 ≤ i ≤ N) be an
orthonormal basis of RN with an inner product (·, ·). Set αi = εi−εi+1, h∗ = {
N∑
i=1
xiεi|
N∑
i=1
xi = 0},
pi = i(2N − i − 1)l/2 and Vi = {pi−1 + 1, pi−1 + 2, . . . , pi} (1 ≤ i ≤ N − 1). Let W be the
set of maps w = (w1, . . . , wN ) (wi : Vi → {i, i + 1, . . . , N − 1}) such that #{w−1
i (j)} = l for
1 ≤ i ≤ j ≤ N − 1. For w = (w1, . . . , wN−1) ∈ W , let Fw be the set of maps f = (f1, . . . , fN−2)
(fi : Vi+1 → Vi) such that (i) fi is injective (ii) If fi(x) = y then wi+1(x) = wi(y). Set
θ1(x) = 2
∞∑
n=1
(−1)n−1 exp
(
τπ
√
−1(n− 1/2)2
)
sin(2n− 1)πx,
θ(x) =
θ1(x)
θ′1(0)
, σλ(x) =
θ′(0)θ(x− λ)
θ(x)θ(λ)
.
For ξ ∈ h∗, we introduce the functions Φτ (t1, . . . , tm) and ω(t;x) as follows
Φτ (t1, . . . , tm) = e2π
√
−1(ξ,
∑
j tjαc(j))
×
∏
1≤j≤(N−1)l
θ(tj)−lN
∏
c(i)=c(j)
i<j
θ(ti − tj)2
∏
|c(i)−c(j)|=1
i<j
θ(ti − tj)−1,
12 K. Takemura
ω(t;x) = e2π
√
−1(ξ,
∑
i xiεi)
∑
w∈W
∑
f∈Fw
N−1∏
i=1
pi∏
k=pi−1+1
σxi−xwi(k)+1
(tk − tfi(k)),
where t0 = 0, f0(k) = 0. Then we have
Proposition 13 ([12, 13, 11]). If (t01, . . . , t
0
m) satisfy the following Bethe Ansatz equations,
∂Φτ
∂ti
|(t01,...,t0m) = 0 (1 ≤ i ≤ m),
the function ω(t0;x) is an eigenfunction of the Hamiltonian H with the eigenvalue
2π2(ξ, ξ)− 2π
√
−1
∂
∂τ
S(t01, . . . , t
0
m; τ)− l(l + 1)(N − 1)Nη,
where
S(t1, . . . , tm; τ) =
∑
i<j
(αc(i), αc(j)) log θ(ti − tj)−
∑
c(i)=1
lN log θ(ti),
η = π2
(
1
6
− 4
∞∑
n=1
pn
1− pn
)
and p = exp
(
2π
√
−1τ
)
.
Therefore, if we find solutions to the Bethe Ansatz equations, we can investigate the Calogero–
Moser–Sutherland model in more detail. There are two things to be considered for applying
Proposition 13 to the spectral problem of the elliptic Calogero–Moser–Sutherland model. The
first one is to find the condition when the eigenfunctions obtained by the Bethe Ansatz method
are connected to square-integrable eigenstates and the second one is how the solutions of the
Bethe Ansatz equation behave.
On the first question, the condition is described as the parameter ξ belonging to some lattice
(the weight lattice of type AN−1). By symmetrizing or anti-symmetrizing the function ω(t0;x),
we obtain square-integrable eigenstates, although we must check that they are identically zero
or not.
On the second question, we consider the solution at p = exp(2π
√
−1τ) = 0 (the case of
the trigonometric limit τ →
√
−1∞) and look into the behavior where p is near 0, because it
is hopeful to solve the Bethe Ansatz equations for the trigonometric case in contrast to being
hopeless directly for the elliptic case. A key tool to connect the trigonomertic solutions to
the elliptic solutions is the implicit function theorem. Thus we construct the square-integrable
eigenstates and obtain the main result in [40], which gives a sufficient condition for regular
convergence of the perturbation expansion. In particular, for the case N = 2, l ∈ Z≥1 and the
case N = 3, l = 1, we have convergence of the perturbation series for all eigenstates related to
the Jack polynomial.
Note that this idea can be interpreted to consider the elliptic Calogero–Moser–Sutherland
model by perturbation from the trigonometric Calogero–Moser–Sutherland model. Convergence
for the general cases was proved in [23] by another method. Namely, by applying Kato–Rellich
theory, we have convergence of the perturbation series in p for l ≥ 0 and arbitrary N . The
eigenvalues and the eigenfunctions are calculated as power series by a standard algorithm of
perturbation. Remark that Fernandez, Garcia and Perelomov [14] derived a fully explicit formula
for second order in p, and Langmann [27, 28] obtained another algorithm for constructing the
eigenfunctions and the eigenvalues as formal power series of p, which also gives a formula for all
orders in p.
On the Bethe Ansatz for the elliptic Calogero–Moser–Sutherland model, there are some
problems to be solved. For example, it has not been shown at the moment of writing that the
eigenfunction ω(t0, x) written in the form of the Bethe Ansatz is also an eigenfunction of the
higher commuting operators P3, . . . , PN (see also [35]).
Towards Finite-Gap Integration of the Inozemtsev Model 13
3.2 The Inozemtsev model
We now introduce a quantum mechanical system that is a multidimensional generalization of
Heun’s equation in the elliptic form.
The Inozemtsev model of type BCN [20] is a quantum mechanical system with N -particles
whose Hamiltonian is given by
H = −
N∑
j=1
∂2
∂x2
j
+ 2l(l + 1)
∑
1≤j<k≤N
(℘(xj − xk) + ℘(xj + xk)) (3.2)
+
N∑
j=1
3∑
i=0
li(li + 1)℘(xj + ωi),
where l and li (i = 0, 1, 2, 3) are coupling constants. This is also a generalization of the elliptic
Calogero–Moser–Sutherland model of type BCN .
The Inozemtsev model of type BCN is completely integrable, i.e., there exist N algebraically
independent mutually commuting differential operators Pk (k = 1, . . . , N) (higher commuting
Hamiltonians) which commute with the Hamiltonian of the model, and Oshima [32] described the
commuting operators explicitly. Note that the Inozemtsev model of type BCN (resp. the elliptic
Calogero–Moser–Sutherland model of type AN ) is a universal completely integrable model of
quantum mechanics with the symmetry of the Weyl group of type BN (resp. type AN ), which
follows from the classification due to Ochiai, Oshima and Sekiguchi [30, 33]. For the case N = 1,
the operator (3.2) appears in the elliptic form of Heun’s equation (2.4). Therefore the Inozemtsev
model of type BCN is regarded as a multidimensional generalization of Heun’s equation.
On the trigonometric limit τ →
√
−1∞, we obtain the trigonometric Calogero–Moser–
Sutherland model of type BCN , and we can investigate the Inozemtsev model of type BCN
by perturbation from the trigonometric model [23, 47].
A method of quasi-solvability is available on the Inozemtsev model of type BCN . Finkel
et al. studied quasi-solvable models in [15, 16], and they found several quasi-exactly solvable
many-body systems including the Inozemtsev model of type BCN . We now describe the finite-
dimensional spaces which are related to the quasi-solvability. The quasi-solvability with respect
to the Hamiltonian H was established in [16] and reformulated in [41].
Proposition 14 ([16, 41]). Let a, bi (i = 0, 1, 2, 3) be the numbers which satisfy a ∈ {−l, l+1}
and bi ∈ {−li/2, (li + 1)/2} (i = 0, 1, 2, 3). Set
Φ(z) =
∏
1≤j<k≤N
(zj − zk)a
N∏
j=1
3∏
i=1
(zj − ei)bi .
Assume that d = −((N − 1)a + b0 + b1 + b2 + b3) is a non-negative integer. Let W sym
d be the
space spanned by
Φ(℘(x1), ℘(x2), . . . , ℘(xN ))
∑
σ∈SN
℘(x1)mσ(1)℘(x2)mσ(2) · · ·℘(xN )mσ(N)
such that mi ∈ {0, 1, . . . , d} for all i. Then we have
H ·W sym
d ⊂ W sym
d .
The quasi-solvability was extended to the commuting differential operators.
14 K. Takemura
Proposition 15 ([41], Theorem 3.3). Assume that d = −((N − 1)a + b0 + b1 + b2 + b3) is
a non-negative integer. Then Pk ·W sym
d ⊂ W sym
d for k = 1, 2, . . . , N , where W sym
d is the finite-
dimensional space defined in Proposition 14 and Pk are the commuting differential operators
which ensure the complete integrability.
By the quasi-solvability, finitely-many eigenvalues and eigenfunctions are calculated by diag-
onalizing the commuting matrices simultaneously for the case that the assumption of Proposi-
tion 14 is true. The eigenfunctions obtained by the quasi-solvability may not be square-integrable
in general, although the eigenfunctions for the case that the parameters a, b0, b1 in Proposition 14
are chosen as a = l + 1, b0 = (l0 + 1)/2 and b1 = (l1 + 1)/2 are square-integrable.
It seems that an explicit expression of the Bethe Ansatz as Proposition 13 for the Inozemtsev
model of type BCN and corresponding conformal field theory are not known in the moment of
writing, although Chalykh, Etingof and Oblomkov [6] gave a general recipe for calculating the
Bloch eigenfunctions. They showed that these are parametrized by a certain algebraic variety
(the Hermite–Bloch variety) which can be computed. This would lead to a version of the Bethe
Ansatz for the models including the Inozemtsev model of type BCN , though these Bethe Ansatz
equations would be rather complicated. For a special case of the BC2 case, this scheme is worked
out explicitly in [6, § 6].
We hope to investigate the Bethe Ansatz for the Inozemtsev model of type BCN to study
the model in more detail.
4 Towards finite-gap integration of the Inozemtsev model
In Section 2, we reviewed the finite-gap integration of Heun’s equation, and observed that the
existence of commuting operator of odd order plays important roles.
For a multidimensional generalization of finite-gap integration, Chalykh and Veselov in-
troduced the notion “algebraic integrability”. The Schrödinger operator L = −
N∑
i=1
∂2/∂x2
i +
u(x1, . . . , xN ) is called completely integrable [8], if there exist N commuting operators L1 =
L,L2, . . . , LN with algebraically independent constant highest symbols s1(ξ) (= ξ2
1 + · · ·+ ξ2
N ),
s2(ξ), . . . , sN (ξ) (ξj =
√
−1∂/∂xj). For example, the Calogero–Moser–Sutherland models are
completely integrable. On the model of type AN , the highest symbols of Pk (see equation (3.1))
are written as ((−
√
−1)k/k!)
∑
i1<i2<···<ik
ξi1ξi2 · · · ξik . The Inozemtsev model of type BCN is also
completely integrable. The operator L is called algebraically integrable in the sense of [8], if L is
completely integrable and there exists one more operator L0 commuting with Li (i = 1, . . . , N)
and the highest symbol s0(ξ) of L0 takes the distinct values at the roots of the equations
si(ξ) = Ei (i = 1, . . . , N) for almost all Ei.
On Heun’s equation in the elliptic form, if l0, l1, l2, l3 are integers, then it is algebraically
integrable, because there exists a commuting operator A of odd order. Thus we expect that
algebraically integrable Schrödinger operators also have rich properties.
Chalykh and Veselov conjectured [7] that the Calogero–Moser–Sutherland model with integral
coupling constants are algebraically integrable. For the case of type AN , Braverman, Etingof
and Gaitsgory [4] obtained algebraic integrability. More precisely, they established that, if l is
a positive integer, then the operator
H = −1
2
N∑
i=1
∂2
∂x2
i
+ l(l + 1)
∑
1≤i<j≤N
℘(xi − xj)
is algebraically integrable by applying the Bethe Ansatz due to Felder–Varchenko (see Sec-
tion 3.1) and the differential Galois theory. In [6], Chalykh, Etingof and Oblomkov proved
Towards Finite-Gap Integration of the Inozemtsev Model 15
that the Chalykh–Veselov conjecture is true and the Inozemtsev model of type BCN (see equa-
tion (3.2)) is also algebraically integrable, if l, l0, l1, l2, l3 are all integers. Their method relies on
results on the differential Galois theory obtained in [4] and the local triviality of the monodromy.
On an application of the algebraic integrability, the eigenfunctions of the Baker–Akhiezer (Bloch)
type are considered. We expect further studies for applications of the algebraic integrability on
the Calogero–Moser–Sutherland models and the Inozemtsev models.
The explicit expressions of the extra commuting operators were obtained and investigated by
Oblomkov, Khodarinova and Prikhodsky [29, 21, 22] for the case l = 1 on the Calogero–Moser–
Sutherland model of type A3 and the case l = l0 = 1, l1 = l2 = l3 = 0 on the Inozemtsev model
of type BC2. On the Calogero–Moser–Sutherland model of type A3 with l = 1, the Hamiltonian
and commuting operators which guarantee the complete integrability are given as
H = −(∂2
1 + ∂2
2 + ∂2
3)/2 + 2(℘12 + ℘23 + ℘31),
P1 = ∂1 + ∂2 + ∂3,
P3 = ∂1∂2∂3 + 2℘12∂3 + 2℘23∂1 + 2℘31∂2,
(see equation (3.1)) where we have used the notations ∂i = ∂/∂xi and ℘ij = ℘(xi − xj). The
additional commuting operators are written as
I12 = (∂1 − ∂3)2(∂2 − ∂3)2 − 8℘23(∂1 − ∂3)2 − 8℘13(∂2 − ∂3)2
+ 4(℘12 − ℘13 − ℘23)(∂1 − ∂3)(∂2 − ∂3)− 2(℘′12 + ℘′13 + 6℘′23)(∂1 − ∂3)
− 2(−℘′12 + 6℘′13 + ℘′23)(∂2 − ∂3)− 2℘′′12 − 6℘′′13 − 6℘′′23 + 4(℘2
12 + ℘2
13 + ℘2
23)
+ 8(℘12℘13 + ℘12℘23 + 7℘13℘23),
I23 and I31, which are written by permuting the indices. Then any non-symmetric linear com-
bination of them, e.g., L4 = I12 + 2I23 would fit into the definition of algebraic integrability
(see [21]). Explicit expressions of the extra commuting operators for the models which have
symmetry of the deformed root system A3(m) or B2(l,m) were also obtained.
Another possible method for constructing extra commuting operators is the multidimensional
Darboux transformation, because the commuting operator for the case of Heun’s equation is con-
structed by composing the (generalized) Darboux transformations. Multidimensional Darboux
transformations were studied from several viewpoints [2, 18, 36, 5]. In [2], based on the existence
of an explicit eigenfunction of the Hamiltonian H(= H(0)) with a certain eigenvalue, an alternate
Hamiltonian H̃(= H(N)), matrix valued operators H(i) (i = 1, . . . , N − 1) and supersymmetry
operators Q−
j+1,j and Q+
j,j+1 (j = 0, . . . , N − 1) which connect H(j) and H(j+1) were introduced
and studied. On the other hand, we know an explicit eigenfunction of the Inozemtsev model of
type BCN , if the value d(= −((N−1)a+b0+b1+b2+b3)) (a ∈ {−l, l+1}, bi ∈ {−li/2, (li+1)/2}
(i = 0, 1, 2, 3)) in the assumption of Proposition 14 is equal to zero. Then the alternate Hamil-
tonian H̃ with respect to H in equation (3.2) would be written as
H̃ = −
N∑
j=1
∂2
∂x2
j
+ 2a(a + 1)
∑
j<k
(℘(xj − xk) + ℘(xj + xk))
+
N∑
j=1
3∑
i=0
2bi(2bi + 1)℘(xj + ωi).
In the moment of writing, we do not know an operator L which directly intertwines the oper-
ators H and H̃ as H̃L = LH. We expect applications of the multidimensional Darboux trans-
formation for the analysis of the elliptic Calogero–Moser–Sutherland model or the Inozemtsev
model.
16 K. Takemura
Acknowledgements
The author would like to thank the referees for valuable comments.
References
[1] Adler M., Kuznetsov V.B., van Moerbeke P., Rational solutions to the Pfaff lattice and Jack polynomials,
Ergodic Theory Dynam. Systems 22 (2002), 1365–1405, nlin.SI/0202037.
[2] Andrianov A.A., Borisov N.V., Ioffe M.V., The factorization method and the Darboux transformation for
multidimensional Hamiltonians, Theoret. and Math. Phys. 61 (1984), 1078–1088.
[3] Aoyama H., Sato M., Tanaka T., N -fold supersymmetry in quantum mechanics: general formalism, Nuclear
Phys. B 619 (2001), 105–127, quant-ph/0106037.
[4] Braverman A., Etingof P., Gaitsgory D., Quantum integrable systems and differential Galois theory, Trans-
for. Groups 2 (1997), 31–57, alg-geom/9607012.
[5] Chalykh O.A., Darboux transformations for multidimensional Schrödinger operators, Russian Math. Surveys
53 (1998), no. 2, 167–168.
[6] Chalykh O.A., Etingof P., Oblomkov A., Generalized Lamé operators, Comm. Math. Phys. 239 (2003),
115–153, math.QA/0212029.
[7] Chalykh O.A., Veselov A.P., Commutative rings of partial differential operators and Lie algebras, Comm.
Math. Phys. 126 (1990), 597–611.
[8] Chalykh O.A., Veselov A.P., Integrability in the theory of Schrödinger operator and harmonic analysis,
Comm. Math. Phys. 152 (1993), 29–40.
[9] Dittrich J., Inozemtsev V.I., On the structure of eigenvectors of the multidimensional Lamé operator,
J. Phys. A: Math. Gen. 26 (1993), L753–L756.
[10] Dubrovin B.A., Matveev V.B., Novikov S.P., Nonlinear equations of Korteweg–de Vries type, finite-band
linear operators and Abelian varieties, Russian Math. Surveys 31 (1976), 59–146.
[11] Felder G., Rimanyi R., Varchenko A., Poincare–Birkhoff–Witt expansions of the canonical elliptic differential
form, math.RT/0502296.
[12] Felder G., Varchenko A., Integral representation of solutions of the elliptic Knizhnik–Zamolodchikov–
Bernard equations, Int. Math. Res. Not. (1995), no. 5, 221–233, hep-th/9502165.
[13] Felder G., Varchenko A., Three formulae for eigenfunctions of integrable Schrödinger operator, Compos.
Math. 107 (1997), 143–175, hep-th/9511120.
[14] Fernandez N.J., Garcia F.W., Perelomov A.M., A perturbative approach to the quantum elliptic Calogero–
Sutherland model, Phys. Lett. A 307 (2003), 233–238, math-ph/0205042.
[15] Finkel F., Gomez-Ullate D., Gonzalez-Lopez A., Rodriguez M.A., Zhdanov R., AN -type Dunkl operators
and new spin Calogero–Sutherland models, Comm. Math. Phys. 221 (2001), 477–497, hep-th/0102039.
[16] Finkel F., Gomez-Ullate D., Gonzalez-Lopez A., Rodriguez M.A., Zhdanov R., New spin Calogero–Suther-
land models related to BN -type Dunkl operators, Nuclear Phys. B 613 (2001), 472–496, hep-th/0103190.
[17] Gesztesy F., Weikard R., Treibich–Verdier potentials and the stationary (m)KdV hierarchy, Math. Z. 219
(1995), 451–476.
[18] Gonzalez-Lopez A., Kamran N., The multidimensional Darboux transformation, J. Geom. Phys. 26 (1998),
202–226, hep-th/9612100.
[19] Ince E.L., Further investigations into the periodic Lamé functions, Proc. Roy. Soc. Edinburgh 60 (1940),
83–99.
[20] Inozemtsev V.I., Lax representation with spectral parameter on a torus for integrable particle systems, Lett.
Math. Phys. 17 (1989), 11–17.
[21] Khodarinova L.A., Prikhodsky I.A., Algebraic spectral relations for elliptic quantum Calogero–Moser prob-
lems, J. Nonlinear Math. Phys. 6 (1999), 263–268, math-ph/0406050.
[22] Khodarinova L.A., Prikhodsky I.A., On algebraic integrability of the deformed elliptic Calogero–Moser
problem, J. Nonlinear Math. Phys. 8 (2001), 50–53, math-ph/0406052.
[23] Komori Y., Takemura K., The perturbation of the quantum Calogero–Moser–Sutherland system and related
results, Comm. Math. Phys. 227 (2002), 93–118, math.QA/0009244.
http://arxiv.org/abs/nlin.SI/0202037
http://arxiv.org/abs/quant-ph/0106037
http://arxiv.org/abs/alg-geom/9607012
http://arxiv.org/abs/math.QA/0212029
http://arxiv.org/abs/math.RT/0502296
http://arxiv.org/abs/hep-th/9502165
http://arxiv.org/abs/hep-th/9511120
http://arxiv.org/abs/math-ph/0205042
http://arxiv.org/abs/hep-th/0102039
http://arxiv.org/abs/hep-th/0103190
http://arxiv.org/abs/hep-th/9612100
http://arxiv.org/abs/math-ph/0406050
http://arxiv.org/abs/math-ph/0406052
http://arxiv.org/abs/math.QA/0009244
Towards Finite-Gap Integration of the Inozemtsev Model 17
[24] Kuznetsov V.B., Mangazeev V.V., Sklyanin, E.K., Q-operator and factorised separation chain for Jack
polynomials, Indag. Math. (N.S.) 14 (2003), 451–482, math.CA/0306242.
[25] Kuznetsov V.B., Nijhoff F.W., Sklyanin E.K., Separation of variables for the Ruijsenaars system, Comm.
Math. Phys. 189 (1997), 855–877, solv-int/9701004.
[26] Kuznetsov V.B., Sklyanin E.K., Separation of variables and integral relations for special functions, Rama-
nujan J. 3 (1999), 5–35, q-alg/9705006.
[27] Langmann E., Anyons and the elliptic Calogero–Sutherland model, Lett. Math. Phys. 54 (2000), 279–289,
math-ph/0007036.
[28] Langmann E., A method to derive explicit formulas for an elliptic generalization of the Jack polynomials, in
Jack, Hall–Littlewood and Macdonald Polynomials, Editors V.B. Kuznetsov and S. Sahi, Contemp. Math.
417 (2006), 257–270, math-ph/0511015.
[29] Oblomkov A.A., Integrability of some quantum systems associated with the root system B2, Moscow Univ.
Math. Bull. 54 (1999), 5–8.
[30] Ochiai H., Oshima T., Sekiguchi H., Commuting families of symmetric differential operators, Proc. Japan.
Acad. 70 (1994), 62–66.
[31] Olshanetsky M.A., Perelomov A.M., Quantum integrable systems related to Lie algebras, Phys. Rep. 94
(1983), 313–404.
[32] Oshima T., Completely integrable systems with a symmetry in coordinates, Asian J. Math. 2 (1998), 935–
955.
[33] Oshima T., Sekiguchi H., Commuting families of differential operators invariant under the action of a Weyl
group, J. Math. Sci. Univ. Tokyo 2 (1995), 1–75.
[34] Ronveaux A. (Editor), Heun’s differential equations, Oxford University Press, Oxford, 1995.
[35] Ruijsenaars S.N.M., Elliptic integrable systems of Calogero–Moser type: a survey, in the Proceedings of
Workshop on Elliptic Integrable Systems (2004, Kyoto), 201–221 (Notes by Y. Komori).
[36] Sabatier P.C., On multidimensional Darboux transformations, Inverse Problems 14 (1998), 355–366.
[37] Slavyanov S., Lay W., Special functions, Oxford University Press, Oxford, 2000.
[38] Smirnov A.O., Elliptic solitons and Heun’s equation, in The Kowalevski Property, CRM Proc. Lecture Notes,
Vol. 32, Amer. Math. Soc., Providence, 2002, 287–305, math.CA/0109149.
[39] Stanley R., Some combinatorial properties of Jack symmetric functions, Adv. Math. 77 (1989), 76–115.
[40] Takemura K., On the eigenstates of the elliptic Calogero–Moser model, Lett. Math. Phys. 53 (2000), 181–194,
math.QA/0002104.
[41] Takemura K., Quasi-exact solvability of Inozemtsev models, J. Phys. A: Math. Gen. 35 (2002), 8867–8881,
math.QA/0205274.
[42] Takemura K., The Heun equation and the Calogero–Moser–Sutherland system. I. The Bethe Ansatz method,
Comm. Math. Phys. 235 (2003), 467–494, math.CA/0103077.
[43] Takemura K., The Heun equation and the Calogero–Moser–Sutherland system. II. The perturbation and
the algebraic solution, Electron. J. Differential Equations (2004), no. 15, 30 pages, math.CA/0112179.
[44] Takemura K., The Heun equation and the Calogero–Moser–Sutherland system. III. The finite gap property
and the monodromy, J. Nonlinear Math. Phys. 11 (2004), 21–46, math.CA/0201208.
[45] Takemura K., The Heun equation and the Calogero–Moser–Sutherland system. IV. The Hermite–Krichever
Ansatz, Comm. Math. Phys. 258 (2005), 367–403, math.CA/0406141.
[46] Takemura K., The Heun equation and the Calogero–Moser–Sutherland system. V. The generalized Darboux
transformations, J. Nonlinear Math. Phys. 13 (2006), 584–611, math.CA/0508093.
[47] Takemura K., Heun equation and Inozemtsev models, in Proceedings of The 24th Int. Coll. Group Theoretical
Methods in Physics (July 15–20, 2002, Paris), Inst. Phys. Conf. Ser. 173 (2003), 605–608, nlin.SI/0303005.
[48] Treibich A., Verdier J.-L., Revetements exceptionnels et sommes de 4 nombres triangulaires, Duke Math. J.
68 (1992), 217–236.
[49] Whittaker E.T., Watson G.N., A course of modern analysis, 4th ed., Cambridge University Press, New York,
1962.
http://arxiv.org/abs/math.CA/0306242
http://arxiv.org/abs/solv-int/9701004
http://arxiv.org/abs/q-alg/9705006
http://arxiv.org/abs/math-ph/0007036
http://arxiv.org/abs/math-ph/0511015
http://arxiv.org/abs/math.CA/0109149
http://arxiv.org/abs/math.QA/0002104
http://arxiv.org/abs/math.QA/0205274
http://arxiv.org/abs/math.CA/0103077
http://arxiv.org/abs/math.CA/0112179
http://arxiv.org/abs/math.CA/0201208
http://arxiv.org/abs/math.CA/0406141
http://arxiv.org/abs/math.CA/0508093
http://arxiv.org/abs/nlin.SI/0303005
1 Introduction
2 Finite-gap integration of Heun's equation
2.1 Darboux transformations and Heun's equation
2.2 Application of finite-gap property
2.3 Relationship among commuting operators
3 Results on the Calogero-Moser-Sutherland model and the Inozemtsev model
3.1 The elliptic Calogero-Moser-Sutherland model
3.2 The Inozemtsev model
4 Towards finite-gap integration of the Inozemtsev model
References
|