Towards Finite-Gap Integration of the Inozemtsev Model
The Inozemtsev model is considered to be a multivaluable generalization of Heun's equation. We review results on Heun's equation, the elliptic Calogero-Moser-Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models.
Gespeichert in:
| Datum: | 2007 |
|---|---|
| 1. Verfasser: | Takemura, K. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2007
|
| Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/147824 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Towards Finite-Gap Integration of the Inozemtsev Model / K. Takemura // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 49 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Stupid country? A country that does not understand. Inozemtsev about the people
von: V. Ynozemtsev
Veröffentlicht: (2018) -
Axisymmetric integrated distribution model of the sinusoidal welding current arc welding gap in the plate
von: Ju. Maksimov, et al.
Veröffentlicht: (2016) -
Application of finite integral transformation when modeling objects with distributed parameters
von: O. I. Makhovych
Veröffentlicht: (2015) -
The Advantages and Gaps of the Existing Models of Innovation Commercialization
von: L. O. Syhyda
Veröffentlicht: (2022) -
Technology Gaps: the Concept, Models, and Ways of overcoming
von: V. P. Vyshnevskyi, et al.
Veröffentlicht: (2020)