A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog

Two super-integrable and super-separable classical systems which can be considered as deformations of the harmonic oscillator and the Smorodinsky-Winternitz in two dimensions are studied and identified with motions in spaces of constant curvature, the deformation parameter being related with the cur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2007
Hauptverfasser: Cariñena, J.F., Rañada, M.F., Santander, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2007
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147830
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog / J.F. Cariñena, M.F. Rañada, M. Santander // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 44 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147830
record_format dspace
spelling Cariñena, J.F.
Rañada, M.F.
Santander, M.
2019-02-16T08:57:13Z
2019-02-16T08:57:13Z
2007
A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog / J.F. Cariñena, M.F. Rañada, M. Santander // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 44 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 37J35; 34A34; 34C15; 70H06
https://nasplib.isofts.kiev.ua/handle/123456789/147830
Two super-integrable and super-separable classical systems which can be considered as deformations of the harmonic oscillator and the Smorodinsky-Winternitz in two dimensions are studied and identified with motions in spaces of constant curvature, the deformation parameter being related with the curvature. In this sense these systems are to be considered as a harmonic oscillator and a Smorodinsky-Winternitz system in such bi-dimensional spaces of constant curvature. The quantization of the first system will be carried out and it is shown that it is super-solvable in the sense that the Schrödinger equation reduces, in three different coordinate systems, to two separate equations involving only one degree of freedom.
This paper is a contribution to the Proceedings of the Workshop on Geometric Aspects of Integrable Systems (July 17–19, 2006, University of Coimbra, Portugal). Partial financial support of research projects BFM-2003-02532, FPA-2003-02948, MTM-2005-09183, DGA E24/1 and VA013C05 is acknowledged.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog
spellingShingle A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog
Cariñena, J.F.
Rañada, M.F.
Santander, M.
title_short A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog
title_full A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog
title_fullStr A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog
title_full_unstemmed A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog
title_sort super-integrable two-dimensional non-linear oscillator with an exactly solvable quantum analog
author Cariñena, J.F.
Rañada, M.F.
Santander, M.
author_facet Cariñena, J.F.
Rañada, M.F.
Santander, M.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Two super-integrable and super-separable classical systems which can be considered as deformations of the harmonic oscillator and the Smorodinsky-Winternitz in two dimensions are studied and identified with motions in spaces of constant curvature, the deformation parameter being related with the curvature. In this sense these systems are to be considered as a harmonic oscillator and a Smorodinsky-Winternitz system in such bi-dimensional spaces of constant curvature. The quantization of the first system will be carried out and it is shown that it is super-solvable in the sense that the Schrödinger equation reduces, in three different coordinate systems, to two separate equations involving only one degree of freedom.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147830
citation_txt A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog / J.F. Cariñena, M.F. Rañada, M. Santander // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 44 назв. — англ.
work_keys_str_mv AT carinenajf asuperintegrabletwodimensionalnonlinearoscillatorwithanexactlysolvablequantumanalog
AT ranadamf asuperintegrabletwodimensionalnonlinearoscillatorwithanexactlysolvablequantumanalog
AT santanderm asuperintegrabletwodimensionalnonlinearoscillatorwithanexactlysolvablequantumanalog
AT carinenajf superintegrabletwodimensionalnonlinearoscillatorwithanexactlysolvablequantumanalog
AT ranadamf superintegrabletwodimensionalnonlinearoscillatorwithanexactlysolvablequantumanalog
AT santanderm superintegrabletwodimensionalnonlinearoscillatorwithanexactlysolvablequantumanalog
first_indexed 2025-11-27T10:33:13Z
last_indexed 2025-11-27T10:33:13Z
_version_ 1850852195592830977