Raising and Lowering Operators for Askey-Wilson Polynomials

In this paper we describe two pairs of raising/lowering operators for Askey-Wilson polynomials, which result from constructions involving very different techniques. The first technique is quite elementary, and depends only on the ''classical'' properties of these polynomials, viz...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2007
Автор: Sahi, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147833
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Raising and Lowering Operators for Askey-Wilson Polynomials / S. Sahi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147833
record_format dspace
spelling Sahi, S.
2019-02-16T09:03:43Z
2019-02-16T09:03:43Z
2007
Raising and Lowering Operators for Askey-Wilson Polynomials / S. Sahi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 25 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 33D45; 33D52; 33D80
https://nasplib.isofts.kiev.ua/handle/123456789/147833
In this paper we describe two pairs of raising/lowering operators for Askey-Wilson polynomials, which result from constructions involving very different techniques. The first technique is quite elementary, and depends only on the ''classical'' properties of these polynomials, viz. the q-difference equation and the three term recurrence. The second technique is less elementary, and involves the one-variable version of the double affine Hecke algebra.
This paper is a contribution to the Vadim Kuznetsov Memorial Issue “Integrable Systems and Related Topics”. We would like to thank the (anonymous) referee for several insightful suggestions which have improved the paper considerably. The referee has also pointed out that one can give an alternative proof of formulas (17) and (18) by combining Theorem 1 with the following identity relating the operators D and D`: [(1 − q²)D`z + q²D(z + z⁻¹) − q(z + z⁻¹)D] f = (1 − q) [(e₁ − e₃) − (1 − abcd)(z + z⁻¹)] f, which holds for all symmetric Laurent polynomials.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Raising and Lowering Operators for Askey-Wilson Polynomials
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Raising and Lowering Operators for Askey-Wilson Polynomials
spellingShingle Raising and Lowering Operators for Askey-Wilson Polynomials
Sahi, S.
title_short Raising and Lowering Operators for Askey-Wilson Polynomials
title_full Raising and Lowering Operators for Askey-Wilson Polynomials
title_fullStr Raising and Lowering Operators for Askey-Wilson Polynomials
title_full_unstemmed Raising and Lowering Operators for Askey-Wilson Polynomials
title_sort raising and lowering operators for askey-wilson polynomials
author Sahi, S.
author_facet Sahi, S.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In this paper we describe two pairs of raising/lowering operators for Askey-Wilson polynomials, which result from constructions involving very different techniques. The first technique is quite elementary, and depends only on the ''classical'' properties of these polynomials, viz. the q-difference equation and the three term recurrence. The second technique is less elementary, and involves the one-variable version of the double affine Hecke algebra.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147833
citation_txt Raising and Lowering Operators for Askey-Wilson Polynomials / S. Sahi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 25 назв. — англ.
work_keys_str_mv AT sahis raisingandloweringoperatorsforaskeywilsonpolynomials
first_indexed 2025-12-07T18:27:33Z
last_indexed 2025-12-07T18:27:33Z
_version_ 1850875108433854464