On the Scaling Limits of Determinantal Point Processes with Kernels Induced by Sturm-Liouville Operators

By applying an idea of Borodin and Olshanski [J. Algebra 313 (2007), 40-60], we study various scaling limits of determinantal point processes with trace class projection kernels given by spectral projections of selfadjoint Sturm-Liouville operators. Instead of studying the convergence of the kernels...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2016
1. Verfasser: Bornemann, F.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147850
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the Scaling Limits of Determinantal Point Processes with Kernels Induced by Sturm-Liouville Operators / F. Bornemann // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147850
record_format dspace
spelling Bornemann, F.
2019-02-16T09:16:49Z
2019-02-16T09:16:49Z
2016
On the Scaling Limits of Determinantal Point Processes with Kernels Induced by Sturm-Liouville Operators / F. Bornemann // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 25 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 15B52; 34B24; 33C45
DOI:10.3842/SIGMA.2016.083
https://nasplib.isofts.kiev.ua/handle/123456789/147850
By applying an idea of Borodin and Olshanski [J. Algebra 313 (2007), 40-60], we study various scaling limits of determinantal point processes with trace class projection kernels given by spectral projections of selfadjoint Sturm-Liouville operators. Instead of studying the convergence of the kernels as functions, the method directly addresses the strong convergence of the induced integral operators. We show that, for this notion of convergence, the Dyson, Airy, and Bessel kernels are universal in the bulk, soft-edge, and hard-edge scaling limits. This result allows us to give a short and unified derivation of the known formulae for the scaling limits of the classical random matrix ensembles with unitary invariance, that is, the Gaussian unitary ensemble (GUE), the Wishart or Laguerre unitary ensemble (LUE), and the MANOVA (multivariate analysis of variance) or Jacobi unitary ensemble (JUE).
This paper is a contribution to the Special Issue on Asymptotics and Universality in Random Matrices, Random Growth Processes, Integrable Systems and Statistical Physics in honor of Percy Deift and Craig Tracy. The full collection is available at http://www.emis.de/journals/SIGMA/Deift-Tracy.html.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
On the Scaling Limits of Determinantal Point Processes with Kernels Induced by Sturm-Liouville Operators
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the Scaling Limits of Determinantal Point Processes with Kernels Induced by Sturm-Liouville Operators
spellingShingle On the Scaling Limits of Determinantal Point Processes with Kernels Induced by Sturm-Liouville Operators
Bornemann, F.
title_short On the Scaling Limits of Determinantal Point Processes with Kernels Induced by Sturm-Liouville Operators
title_full On the Scaling Limits of Determinantal Point Processes with Kernels Induced by Sturm-Liouville Operators
title_fullStr On the Scaling Limits of Determinantal Point Processes with Kernels Induced by Sturm-Liouville Operators
title_full_unstemmed On the Scaling Limits of Determinantal Point Processes with Kernels Induced by Sturm-Liouville Operators
title_sort on the scaling limits of determinantal point processes with kernels induced by sturm-liouville operators
author Bornemann, F.
author_facet Bornemann, F.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description By applying an idea of Borodin and Olshanski [J. Algebra 313 (2007), 40-60], we study various scaling limits of determinantal point processes with trace class projection kernels given by spectral projections of selfadjoint Sturm-Liouville operators. Instead of studying the convergence of the kernels as functions, the method directly addresses the strong convergence of the induced integral operators. We show that, for this notion of convergence, the Dyson, Airy, and Bessel kernels are universal in the bulk, soft-edge, and hard-edge scaling limits. This result allows us to give a short and unified derivation of the known formulae for the scaling limits of the classical random matrix ensembles with unitary invariance, that is, the Gaussian unitary ensemble (GUE), the Wishart or Laguerre unitary ensemble (LUE), and the MANOVA (multivariate analysis of variance) or Jacobi unitary ensemble (JUE).
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147850
citation_txt On the Scaling Limits of Determinantal Point Processes with Kernels Induced by Sturm-Liouville Operators / F. Bornemann // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 25 назв. — англ.
work_keys_str_mv AT bornemannf onthescalinglimitsofdeterminantalpointprocesseswithkernelsinducedbysturmliouvilleoperators
first_indexed 2025-12-07T19:42:46Z
last_indexed 2025-12-07T19:42:46Z
_version_ 1850879840798900224