Bruhat Order in the Full Symmetric sln Toda Lattice on Partial Flag Space

In our previous paper [Comm. Math. Phys. 330 (2014), 367-399] we described the asymptotic behaviour of trajectories of the full symmetric sln Toda lattice in the case of distinct eigenvalues of the Lax matrix. It turned out that it is completely determined by the Bruhat order on the permutation grou...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2016
Автори: Chernyakov, Y.B., Sharygin, G.I., Sorin, A.S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147851
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Bruhat Order in the Full Symmetric sln Toda Lattice on Partial Flag Space / Y.B. Chernyakov, G.I. Sharygin, A.S. Sorin // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147851
record_format dspace
spelling Chernyakov, Y.B.
Sharygin, G.I.
Sorin, A.S.
2019-02-16T09:17:24Z
2019-02-16T09:17:24Z
2016
Bruhat Order in the Full Symmetric sln Toda Lattice on Partial Flag Space / Y.B. Chernyakov, G.I. Sharygin, A.S. Sorin // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 23 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 06A06; 37D15; 37J35
DOI:10.3842/SIGMA.2016.084
https://nasplib.isofts.kiev.ua/handle/123456789/147851
In our previous paper [Comm. Math. Phys. 330 (2014), 367-399] we described the asymptotic behaviour of trajectories of the full symmetric sln Toda lattice in the case of distinct eigenvalues of the Lax matrix. It turned out that it is completely determined by the Bruhat order on the permutation group. In the present paper we extend this result to the case when some eigenvalues of the Lax matrix coincide. In that case the trajectories are described in terms of the projection to a partial flag space where the induced dynamical system verifies the same properties as before: we show that when t→±∞ the trajectories of the induced dynamical system converge to a finite set of points in the partial flag space indexed by the Schubert cells so that any two points of this set are connected by a trajectory if and only if the corresponding cells are adjacent. This relation can be explained in terms of the Bruhat order on multiset permutations.
The authors would like to thank G. Koshevoy for the fruitful discussion. We also would like to thank the referees, whose remarks helped in a great measure to improve the paper. The work of Yu.B. Chernyakov was supported by grant RFBR-15-01-08462. The work of G.I. Sharygin was supported by grant RFBR-15-01-05990. The work of A.S. Sorin was partially supported by RFBR grants 15-52-05022-Arm-a and 16-52-12012-NNIO-a.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Bruhat Order in the Full Symmetric sln Toda Lattice on Partial Flag Space
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Bruhat Order in the Full Symmetric sln Toda Lattice on Partial Flag Space
spellingShingle Bruhat Order in the Full Symmetric sln Toda Lattice on Partial Flag Space
Chernyakov, Y.B.
Sharygin, G.I.
Sorin, A.S.
title_short Bruhat Order in the Full Symmetric sln Toda Lattice on Partial Flag Space
title_full Bruhat Order in the Full Symmetric sln Toda Lattice on Partial Flag Space
title_fullStr Bruhat Order in the Full Symmetric sln Toda Lattice on Partial Flag Space
title_full_unstemmed Bruhat Order in the Full Symmetric sln Toda Lattice on Partial Flag Space
title_sort bruhat order in the full symmetric sln toda lattice on partial flag space
author Chernyakov, Y.B.
Sharygin, G.I.
Sorin, A.S.
author_facet Chernyakov, Y.B.
Sharygin, G.I.
Sorin, A.S.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In our previous paper [Comm. Math. Phys. 330 (2014), 367-399] we described the asymptotic behaviour of trajectories of the full symmetric sln Toda lattice in the case of distinct eigenvalues of the Lax matrix. It turned out that it is completely determined by the Bruhat order on the permutation group. In the present paper we extend this result to the case when some eigenvalues of the Lax matrix coincide. In that case the trajectories are described in terms of the projection to a partial flag space where the induced dynamical system verifies the same properties as before: we show that when t→±∞ the trajectories of the induced dynamical system converge to a finite set of points in the partial flag space indexed by the Schubert cells so that any two points of this set are connected by a trajectory if and only if the corresponding cells are adjacent. This relation can be explained in terms of the Bruhat order on multiset permutations.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147851
citation_txt Bruhat Order in the Full Symmetric sln Toda Lattice on Partial Flag Space / Y.B. Chernyakov, G.I. Sharygin, A.S. Sorin // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 23 назв. — англ.
work_keys_str_mv AT chernyakovyb bruhatorderinthefullsymmetricslntodalatticeonpartialflagspace
AT sharygingi bruhatorderinthefullsymmetricslntodalatticeonpartialflagspace
AT sorinas bruhatorderinthefullsymmetricslntodalatticeonpartialflagspace
first_indexed 2025-12-07T17:59:37Z
last_indexed 2025-12-07T17:59:37Z
_version_ 1850873350468927488