A Duflo Star Product for Poisson Groups

Let G be a finite-dimensional Poisson algebraic, Lie or formal group. We show that the center of the quantization of G provided by an Etingof-Kazhdan functor is isomorphic as an algebra to the Poisson center of the algebra of functions on G. This recovers and generalizes Duflo's theorem which g...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2016
Автор: Brochier, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147854
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Duflo Star Product for Poisson Groups / A. Brochier // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147854
record_format dspace
spelling Brochier, A.
2019-02-16T09:18:49Z
2019-02-16T09:18:49Z
2016
A Duflo Star Product for Poisson Groups / A. Brochier // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 20G42; 17B37; 53D55
DOI:10.3842/SIGMA.2016.088
https://nasplib.isofts.kiev.ua/handle/123456789/147854
Let G be a finite-dimensional Poisson algebraic, Lie or formal group. We show that the center of the quantization of G provided by an Etingof-Kazhdan functor is isomorphic as an algebra to the Poisson center of the algebra of functions on G. This recovers and generalizes Duflo's theorem which gives an isomorphism between the center of the enveloping algebra of a finite-dimensional Lie algebra a and the subalgebra of ad-invariant in the symmetric algebra of a. As our proof relies on Etingof-Kazhdan construction it ultimately depends on the existence of Drinfeld associators, but otherwise it is a fairly simple application of graphical calculus. This shed some lights on Alekseev-Torossian proof of the Kashiwara-Vergne conjecture, and on the relation observed by Bar-Natan-Le-Thurston between the Duflo isomorphism and the Kontsevich integral of the unknot.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
A Duflo Star Product for Poisson Groups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A Duflo Star Product for Poisson Groups
spellingShingle A Duflo Star Product for Poisson Groups
Brochier, A.
title_short A Duflo Star Product for Poisson Groups
title_full A Duflo Star Product for Poisson Groups
title_fullStr A Duflo Star Product for Poisson Groups
title_full_unstemmed A Duflo Star Product for Poisson Groups
title_sort duflo star product for poisson groups
author Brochier, A.
author_facet Brochier, A.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Let G be a finite-dimensional Poisson algebraic, Lie or formal group. We show that the center of the quantization of G provided by an Etingof-Kazhdan functor is isomorphic as an algebra to the Poisson center of the algebra of functions on G. This recovers and generalizes Duflo's theorem which gives an isomorphism between the center of the enveloping algebra of a finite-dimensional Lie algebra a and the subalgebra of ad-invariant in the symmetric algebra of a. As our proof relies on Etingof-Kazhdan construction it ultimately depends on the existence of Drinfeld associators, but otherwise it is a fairly simple application of graphical calculus. This shed some lights on Alekseev-Torossian proof of the Kashiwara-Vergne conjecture, and on the relation observed by Bar-Natan-Le-Thurston between the Duflo isomorphism and the Kontsevich integral of the unknot.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147854
citation_txt A Duflo Star Product for Poisson Groups / A. Brochier // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ.
work_keys_str_mv AT brochiera aduflostarproductforpoissongroups
AT brochiera duflostarproductforpoissongroups
first_indexed 2025-12-07T19:43:22Z
last_indexed 2025-12-07T19:43:22Z
_version_ 1850879878196363264