A Riemann-Hilbert Approach for the Novikov Equation

We develop the inverse scattering transform method for the Novikov equation ut−utxx+4u²ux=3uuxuxx+u²uxxx considered on the line x∈(−∞,∞) in the case of non-zero constant background. The approach is based on the analysis of an associated Riemann-Hilbert (RH) problem, which in this case is a 3×3 matri...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2016
Main Authors: Boutet de Monvel, A., Shepelsky, D., Zielinski, L.
Format: Article
Language:English
Published: Інститут математики НАН України 2016
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/147860
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A Riemann-Hilbert Approach for the Novikov Equation / A. Boutet de Monvel, D. Shepelsky, L. Zielinski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 44 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147860
record_format dspace
spelling Boutet de Monvel, A.
Shepelsky, D.
Zielinski, L.
2019-02-16T09:26:42Z
2019-02-16T09:26:42Z
2016
A Riemann-Hilbert Approach for the Novikov Equation / A. Boutet de Monvel, D. Shepelsky, L. Zielinski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 44 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 35Q53; 37K15; 35Q15; 35B40; 35Q51; 37K40
DOI:10.3842/SIGMA.2016.095
https://nasplib.isofts.kiev.ua/handle/123456789/147860
We develop the inverse scattering transform method for the Novikov equation ut−utxx+4u²ux=3uuxuxx+u²uxxx considered on the line x∈(−∞,∞) in the case of non-zero constant background. The approach is based on the analysis of an associated Riemann-Hilbert (RH) problem, which in this case is a 3×3 matrix problem. The structure of this RH problem shares many common features with the case of the Degasperis-Procesi (DP) equation having quadratic nonlinear terms (see [Boutet de Monvel A., Shepelsky D., Nonlinearity 26 (2013), 2081-2107, arXiv:1107.5995]) and thus the Novikov equation can be viewed as a ''modified DP equation'', in analogy with the relationship between the Korteweg-de Vries (KdV) equation and the modified Korteweg-de Vries (mKdV) equation. We present parametric formulas giving the solution of the Cauchy problem for the Novikov equation in terms of the solution of the RH problem and discuss the possibilities to use the developed formalism for further studying of the Novikov equation.
This paper is a contribution to the Special Issue on Asymptotics and Universality in Random Matrices, Random Growth Processes, Integrable Systems and Statistical Physics in honor of Percy Deift and Craig Tracy. The full collection is available at http://www.emis.de/journals/SIGMA/Deift-Tracy.html.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
A Riemann-Hilbert Approach for the Novikov Equation
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A Riemann-Hilbert Approach for the Novikov Equation
spellingShingle A Riemann-Hilbert Approach for the Novikov Equation
Boutet de Monvel, A.
Shepelsky, D.
Zielinski, L.
title_short A Riemann-Hilbert Approach for the Novikov Equation
title_full A Riemann-Hilbert Approach for the Novikov Equation
title_fullStr A Riemann-Hilbert Approach for the Novikov Equation
title_full_unstemmed A Riemann-Hilbert Approach for the Novikov Equation
title_sort riemann-hilbert approach for the novikov equation
author Boutet de Monvel, A.
Shepelsky, D.
Zielinski, L.
author_facet Boutet de Monvel, A.
Shepelsky, D.
Zielinski, L.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We develop the inverse scattering transform method for the Novikov equation ut−utxx+4u²ux=3uuxuxx+u²uxxx considered on the line x∈(−∞,∞) in the case of non-zero constant background. The approach is based on the analysis of an associated Riemann-Hilbert (RH) problem, which in this case is a 3×3 matrix problem. The structure of this RH problem shares many common features with the case of the Degasperis-Procesi (DP) equation having quadratic nonlinear terms (see [Boutet de Monvel A., Shepelsky D., Nonlinearity 26 (2013), 2081-2107, arXiv:1107.5995]) and thus the Novikov equation can be viewed as a ''modified DP equation'', in analogy with the relationship between the Korteweg-de Vries (KdV) equation and the modified Korteweg-de Vries (mKdV) equation. We present parametric formulas giving the solution of the Cauchy problem for the Novikov equation in terms of the solution of the RH problem and discuss the possibilities to use the developed formalism for further studying of the Novikov equation.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147860
citation_txt A Riemann-Hilbert Approach for the Novikov Equation / A. Boutet de Monvel, D. Shepelsky, L. Zielinski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 44 назв. — англ.
work_keys_str_mv AT boutetdemonvela ariemannhilbertapproachforthenovikovequation
AT shepelskyd ariemannhilbertapproachforthenovikovequation
AT zielinskil ariemannhilbertapproachforthenovikovequation
AT boutetdemonvela riemannhilbertapproachforthenovikovequation
AT shepelskyd riemannhilbertapproachforthenovikovequation
AT zielinskil riemannhilbertapproachforthenovikovequation
first_indexed 2025-12-07T20:25:35Z
last_indexed 2025-12-07T20:25:35Z
_version_ 1850882533774852096