On Harmonic Analysis Operators in Laguerre-Dunkl and Laguerre-Symmetrized Settings

We study several fundamental harmonic analysis operators in the multi-dimensional context of the Dunkl harmonic oscillator and the underlying group of reflections isomorphic to Zd2. Noteworthy, we admit negative values of the multiplicity functions. Our investigations include maximal operators, g-fu...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2016
Автори: Nowak, A., Stempak, K., Szarek, T.Z.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147861
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Harmonic Analysis Operators in Laguerre-Dunkl and Laguerre-Symmetrized Settings / A. Nowak, K. Stempak, T.Z. Szarek // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 46 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147861
record_format dspace
spelling Nowak, A.
Stempak, K.
Szarek, T.Z.
2019-02-16T09:28:22Z
2019-02-16T09:28:22Z
2016
On Harmonic Analysis Operators in Laguerre-Dunkl and Laguerre-Symmetrized Settings / A. Nowak, K. Stempak, T.Z. Szarek // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 46 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 42C99; 42C10; 42C20; 42B20; 42B15; 42B25
DOI:10.3842/SIGMA.2016.096
https://nasplib.isofts.kiev.ua/handle/123456789/147861
We study several fundamental harmonic analysis operators in the multi-dimensional context of the Dunkl harmonic oscillator and the underlying group of reflections isomorphic to Zd2. Noteworthy, we admit negative values of the multiplicity functions. Our investigations include maximal operators, g-functions, Lusin area integrals, Riesz transforms and multipliers of Laplace and Laplace-Stieltjes type. By means of the general Calderón-Zygmund theory we prove that these operators are bounded on weighted Lp spaces, 1 < p < ∞, and from weighted L1 to weighted weak L1. We also obtain similar results for analogous set of operators in the closely related multi-dimensional Laguerre-symmetrized framework. The latter emerges from a symmetrization procedure proposed recently by the first two authors. As a by-product of the main developments we get some new results in the multi-dimensional Laguerre function setting of convolution type.
Research of the first-named and the second-named authors was supported by the National Science Centre of Poland, project no. 2013/09/B/ST1/02057. The third-named author was partially supported by the National Science Centre of Poland, project no. 2012/05/N/ST1/02746.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
On Harmonic Analysis Operators in Laguerre-Dunkl and Laguerre-Symmetrized Settings
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On Harmonic Analysis Operators in Laguerre-Dunkl and Laguerre-Symmetrized Settings
spellingShingle On Harmonic Analysis Operators in Laguerre-Dunkl and Laguerre-Symmetrized Settings
Nowak, A.
Stempak, K.
Szarek, T.Z.
title_short On Harmonic Analysis Operators in Laguerre-Dunkl and Laguerre-Symmetrized Settings
title_full On Harmonic Analysis Operators in Laguerre-Dunkl and Laguerre-Symmetrized Settings
title_fullStr On Harmonic Analysis Operators in Laguerre-Dunkl and Laguerre-Symmetrized Settings
title_full_unstemmed On Harmonic Analysis Operators in Laguerre-Dunkl and Laguerre-Symmetrized Settings
title_sort on harmonic analysis operators in laguerre-dunkl and laguerre-symmetrized settings
author Nowak, A.
Stempak, K.
Szarek, T.Z.
author_facet Nowak, A.
Stempak, K.
Szarek, T.Z.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study several fundamental harmonic analysis operators in the multi-dimensional context of the Dunkl harmonic oscillator and the underlying group of reflections isomorphic to Zd2. Noteworthy, we admit negative values of the multiplicity functions. Our investigations include maximal operators, g-functions, Lusin area integrals, Riesz transforms and multipliers of Laplace and Laplace-Stieltjes type. By means of the general Calderón-Zygmund theory we prove that these operators are bounded on weighted Lp spaces, 1 < p < ∞, and from weighted L1 to weighted weak L1. We also obtain similar results for analogous set of operators in the closely related multi-dimensional Laguerre-symmetrized framework. The latter emerges from a symmetrization procedure proposed recently by the first two authors. As a by-product of the main developments we get some new results in the multi-dimensional Laguerre function setting of convolution type.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147861
citation_txt On Harmonic Analysis Operators in Laguerre-Dunkl and Laguerre-Symmetrized Settings / A. Nowak, K. Stempak, T.Z. Szarek // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 46 назв. — англ.
work_keys_str_mv AT nowaka onharmonicanalysisoperatorsinlaguerredunklandlaguerresymmetrizedsettings
AT stempakk onharmonicanalysisoperatorsinlaguerredunklandlaguerresymmetrizedsettings
AT szarektz onharmonicanalysisoperatorsinlaguerredunklandlaguerresymmetrizedsettings
first_indexed 2025-12-07T18:17:49Z
last_indexed 2025-12-07T18:17:49Z
_version_ 1850874496091684865