Multiple Actions of the Monodromy Matrix in gl(2|1)-Invariant Integrable Models

We study gl(2|1) symmetric integrable models solvable by the nested algebraic Bethe ansatz. Using explicit formulas for the Bethe vectors we derive the actions of the monodromy matrix entries onto these vectors. We show that the result of these actions is a finite linear combination of Bethe vectors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2016
Hauptverfasser: Hutsalyuk, A., Liashyk, A., Pakuliak, S.Z., Ragoucy, E., Slavnov, N.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147864
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Multiple Actions of the Monodromy Matrix in gl(2|1)-Invariant Integrable Models / A. Hutsalyuk. A. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 54 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147864
record_format dspace
spelling Hutsalyuk, A.
Liashyk, A.
Pakuliak, S.Z.
Ragoucy, E.
Slavnov, N.A.
2019-02-16T09:33:04Z
2019-02-16T09:33:04Z
2016
Multiple Actions of the Monodromy Matrix in gl(2|1)-Invariant Integrable Models / A. Hutsalyuk. A. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 54 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 82B23; 81R12; 81R50; 17B80
DOI:10.3842/SIGMA.2016.099
https://nasplib.isofts.kiev.ua/handle/123456789/147864
We study gl(2|1) symmetric integrable models solvable by the nested algebraic Bethe ansatz. Using explicit formulas for the Bethe vectors we derive the actions of the monodromy matrix entries onto these vectors. We show that the result of these actions is a finite linear combination of Bethe vectors. The obtained formulas open a way for studying scalar products of Bethe vectors.
This paper is a contribution to the Special Issue on Recent Advances in Quantum Integrable Systems. The full collection is available at http://www.emis.de/journals/SIGMA/RAQIS2016.html. The work of A.L. has been funded by the Russian Academic Excellence Project 5-100 and by joint NASU-CNRS project F14-2016. The work of S.P. was supported in part by the RFBR grant 16-01-00562-a. N.A.S. was supported by the grants RFBR-15-31-20484-mol-a-ved and RFBR-14-01-00860-a.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Multiple Actions of the Monodromy Matrix in gl(2|1)-Invariant Integrable Models
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Multiple Actions of the Monodromy Matrix in gl(2|1)-Invariant Integrable Models
spellingShingle Multiple Actions of the Monodromy Matrix in gl(2|1)-Invariant Integrable Models
Hutsalyuk, A.
Liashyk, A.
Pakuliak, S.Z.
Ragoucy, E.
Slavnov, N.A.
title_short Multiple Actions of the Monodromy Matrix in gl(2|1)-Invariant Integrable Models
title_full Multiple Actions of the Monodromy Matrix in gl(2|1)-Invariant Integrable Models
title_fullStr Multiple Actions of the Monodromy Matrix in gl(2|1)-Invariant Integrable Models
title_full_unstemmed Multiple Actions of the Monodromy Matrix in gl(2|1)-Invariant Integrable Models
title_sort multiple actions of the monodromy matrix in gl(2|1)-invariant integrable models
author Hutsalyuk, A.
Liashyk, A.
Pakuliak, S.Z.
Ragoucy, E.
Slavnov, N.A.
author_facet Hutsalyuk, A.
Liashyk, A.
Pakuliak, S.Z.
Ragoucy, E.
Slavnov, N.A.
publishDate 2016
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study gl(2|1) symmetric integrable models solvable by the nested algebraic Bethe ansatz. Using explicit formulas for the Bethe vectors we derive the actions of the monodromy matrix entries onto these vectors. We show that the result of these actions is a finite linear combination of Bethe vectors. The obtained formulas open a way for studying scalar products of Bethe vectors.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147864
citation_txt Multiple Actions of the Monodromy Matrix in gl(2|1)-Invariant Integrable Models / A. Hutsalyuk. A. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 54 назв. — англ.
work_keys_str_mv AT hutsalyuka multipleactionsofthemonodromymatrixingl21invariantintegrablemodels
AT liashyka multipleactionsofthemonodromymatrixingl21invariantintegrablemodels
AT pakuliaksz multipleactionsofthemonodromymatrixingl21invariantintegrablemodels
AT ragoucye multipleactionsofthemonodromymatrixingl21invariantintegrablemodels
AT slavnovna multipleactionsofthemonodromymatrixingl21invariantintegrablemodels
first_indexed 2025-12-07T16:18:17Z
last_indexed 2025-12-07T16:18:17Z
_version_ 1850866975577735168