Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses
S⁴ is not a complex manifold, but it is sufficient to remove one point to make it complex. Using supersymmetry methods, we show that the Dolbeault complex (involving the holomorphic exterior derivative ∂ and its Hermitian conjugate) can be perfectly well defined in this case. We calculate the spectr...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2011 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2011
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/147990 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses / A.V. Smilga // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 17 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | S⁴ is not a complex manifold, but it is sufficient to remove one point to make it complex. Using supersymmetry methods, we show that the Dolbeault complex (involving the holomorphic exterior derivative ∂ and its Hermitian conjugate) can be perfectly well defined in this case. We calculate the spectrum of the Dolbeault Laplacian. It involves 3 bosonic zero modes such that the Dolbeault index on S⁴\{·} is equal to 3.
|
|---|---|
| ISSN: | 1815-0659 |