Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses

S⁴ is not a complex manifold, but it is sufficient to remove one point to make it complex. Using supersymmetry methods, we show that the Dolbeault complex (involving the holomorphic exterior derivative ∂ and its Hermitian conjugate) can be perfectly well defined in this case. We calculate the spectr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2011
1. Verfasser: Smilga, A.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2011
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147990
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses / A.V. Smilga // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147990
record_format dspace
spelling Smilga, A.V.
2019-02-16T12:45:52Z
2019-02-16T12:45:52Z
2011
Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses / A.V. Smilga // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 17 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 32C15; 53B35; 53Z05
http://dx.doi.org/10.3842/SIGMA.2011.105
https://nasplib.isofts.kiev.ua/handle/123456789/147990
S⁴ is not a complex manifold, but it is sufficient to remove one point to make it complex. Using supersymmetry methods, we show that the Dolbeault complex (involving the holomorphic exterior derivative ∂ and its Hermitian conjugate) can be perfectly well defined in this case. We calculate the spectrum of the Dolbeault Laplacian. It involves 3 bosonic zero modes such that the Dolbeault index on S⁴\{·} is equal to 3.
I am indebted to G. Carron, E. Ivanov, and V. Roubtsov for useful discussions.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses
spellingShingle Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses
Smilga, A.V.
title_short Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses
title_full Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses
title_fullStr Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses
title_full_unstemmed Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses
title_sort dolbeault complex on s⁴\{·} and s⁶\{·} through supersymmetric glasses
author Smilga, A.V.
author_facet Smilga, A.V.
publishDate 2011
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description S⁴ is not a complex manifold, but it is sufficient to remove one point to make it complex. Using supersymmetry methods, we show that the Dolbeault complex (involving the holomorphic exterior derivative ∂ and its Hermitian conjugate) can be perfectly well defined in this case. We calculate the spectrum of the Dolbeault Laplacian. It involves 3 bosonic zero modes such that the Dolbeault index on S⁴\{·} is equal to 3.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147990
citation_txt Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses / A.V. Smilga // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT smilgaav dolbeaultcomplexons4ands6throughsupersymmetricglasses
first_indexed 2025-12-07T13:25:53Z
last_indexed 2025-12-07T13:25:53Z
_version_ 1850856128985956352