Properties of the Exceptional (Xl) Laguerre and Jacobi Polynomials

We present various results on the properties of the four infinite sets of the exceptional Xl polynomials discovered recently by Odake and Sasaki [Phys. Lett. B 679 (2009), 414-417; Phys. Lett. B 684 (2010), 173-176]. These Xl polynomials are global solutions of second order Fuchsian differential equ...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2011
Автори: Ho, C., Odake, S., Sasaki, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147992
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Properties of the Exceptional (Xl) Laguerre and Jacobi Polynomials / C. Ho, S. Odake, R. Sasaki // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147992
record_format dspace
spelling Ho, C.
Odake, S.
Sasaki, R.
2019-02-16T12:46:59Z
2019-02-16T12:46:59Z
2011
Properties of the Exceptional (Xl) Laguerre and Jacobi Polynomials / C. Ho, S. Odake, R. Sasaki // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 42C05; 33E30; 81Q05
http://dx.doi.org/10.3842/SIGMA.2011.107
https://nasplib.isofts.kiev.ua/handle/123456789/147992
We present various results on the properties of the four infinite sets of the exceptional Xl polynomials discovered recently by Odake and Sasaki [Phys. Lett. B 679 (2009), 414-417; Phys. Lett. B 684 (2010), 173-176]. These Xl polynomials are global solutions of second order Fuchsian differential equations with l+3 regular singularities and their confluent limits. We derive equivalent but much simpler looking forms of the Xl polynomials. The other subjects discussed in detail are: factorisation of the Fuchsian differential operators, shape invariance, the forward and backward shift operations, invariant polynomial subspaces under the Fuchsian differential operators, the Gram-Schmidt orthonormalisation procedure, three term recurrence relations and the generating functions for the Xl polynomials.
This work is supported in part by the National Science Council (NSC) of the Republic of China under Grant NSC 96-2112-M-032-007-MY3 (CLH), and in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, No.19540179 (RS). Part of the work was done during CLH’s visit to the Yukawa Institute for Theoretical Physics (YITP), Kyoto University, and he would like to thank the staf f and members of YITP for the hospitality extended to him. RS wishes to thank National Taiwan University and NationalChiao-Tung University for the hospitality extended to him during his visits in which a part of the work was done.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Properties of the Exceptional (Xl) Laguerre and Jacobi Polynomials
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Properties of the Exceptional (Xl) Laguerre and Jacobi Polynomials
spellingShingle Properties of the Exceptional (Xl) Laguerre and Jacobi Polynomials
Ho, C.
Odake, S.
Sasaki, R.
title_short Properties of the Exceptional (Xl) Laguerre and Jacobi Polynomials
title_full Properties of the Exceptional (Xl) Laguerre and Jacobi Polynomials
title_fullStr Properties of the Exceptional (Xl) Laguerre and Jacobi Polynomials
title_full_unstemmed Properties of the Exceptional (Xl) Laguerre and Jacobi Polynomials
title_sort properties of the exceptional (xl) laguerre and jacobi polynomials
author Ho, C.
Odake, S.
Sasaki, R.
author_facet Ho, C.
Odake, S.
Sasaki, R.
publishDate 2011
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We present various results on the properties of the four infinite sets of the exceptional Xl polynomials discovered recently by Odake and Sasaki [Phys. Lett. B 679 (2009), 414-417; Phys. Lett. B 684 (2010), 173-176]. These Xl polynomials are global solutions of second order Fuchsian differential equations with l+3 regular singularities and their confluent limits. We derive equivalent but much simpler looking forms of the Xl polynomials. The other subjects discussed in detail are: factorisation of the Fuchsian differential operators, shape invariance, the forward and backward shift operations, invariant polynomial subspaces under the Fuchsian differential operators, the Gram-Schmidt orthonormalisation procedure, three term recurrence relations and the generating functions for the Xl polynomials.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147992
citation_txt Properties of the Exceptional (Xl) Laguerre and Jacobi Polynomials / C. Ho, S. Odake, R. Sasaki // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.
work_keys_str_mv AT hoc propertiesoftheexceptionalxllaguerreandjacobipolynomials
AT odakes propertiesoftheexceptionalxllaguerreandjacobipolynomials
AT sasakir propertiesoftheexceptionalxllaguerreandjacobipolynomials
first_indexed 2025-12-01T01:21:17Z
last_indexed 2025-12-01T01:21:17Z
_version_ 1850858975517474816