Symmetries of Spin Calogero Models

We investigate the symmetry algebras of integrable spin Calogero systems constructed from Dunkl operators associated to finite Coxeter groups. Based on two explicit examples, we show that the common view of associating one symmetry algebra to a given Coxeter group W is wrong. More precisely, the sym...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2008
Hauptverfasser: Caudrelier, V., Crampé, N.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147999
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Symmetries of Spin Calogero Models / V. Caudrelier, N. Crampé // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 30 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147999
record_format dspace
spelling Caudrelier, V.
Crampé, N.
2019-02-16T16:23:50Z
2019-02-16T16:23:50Z
2008
Symmetries of Spin Calogero Models / V. Caudrelier, N. Crampé // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 30 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 70H06; 81R12; 81R50
https://nasplib.isofts.kiev.ua/handle/123456789/147999
We investigate the symmetry algebras of integrable spin Calogero systems constructed from Dunkl operators associated to finite Coxeter groups. Based on two explicit examples, we show that the common view of associating one symmetry algebra to a given Coxeter group W is wrong. More precisely, the symmetry algebra heavily depends on the representation of W on the spins. We prove this by identifying two different symmetry algebras for a BL spin Calogero model and three for G₂ spin Calogero model. They are all related to the half-loop algebra and its twisted versions. Some of the result are extended to any finite Coxeter group.
This paper is a contribution to the Special Issue on Dunkl Operators and Related Topics. N.C. would like to thank the hospitality of the Centre for Mathematical Science, City University, where this work was initiated.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Symmetries of Spin Calogero Models
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Symmetries of Spin Calogero Models
spellingShingle Symmetries of Spin Calogero Models
Caudrelier, V.
Crampé, N.
title_short Symmetries of Spin Calogero Models
title_full Symmetries of Spin Calogero Models
title_fullStr Symmetries of Spin Calogero Models
title_full_unstemmed Symmetries of Spin Calogero Models
title_sort symmetries of spin calogero models
author Caudrelier, V.
Crampé, N.
author_facet Caudrelier, V.
Crampé, N.
publishDate 2008
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We investigate the symmetry algebras of integrable spin Calogero systems constructed from Dunkl operators associated to finite Coxeter groups. Based on two explicit examples, we show that the common view of associating one symmetry algebra to a given Coxeter group W is wrong. More precisely, the symmetry algebra heavily depends on the representation of W on the spins. We prove this by identifying two different symmetry algebras for a BL spin Calogero model and three for G₂ spin Calogero model. They are all related to the half-loop algebra and its twisted versions. Some of the result are extended to any finite Coxeter group.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147999
fulltext
citation_txt Symmetries of Spin Calogero Models / V. Caudrelier, N. Crampé // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 30 назв. — англ.
work_keys_str_mv AT caudrelierv symmetriesofspincalogeromodels
AT crampen symmetriesofspincalogeromodels
first_indexed 2025-11-24T11:44:39Z
last_indexed 2025-11-24T11:44:39Z
_version_ 1850846096049307648