Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds

In this work it is shown that a necessary condition for the completeness of the geodesics of left invariant pseudo-Riemannian metrics on Lie groups is also sufficient in the case of 3-dimensional unimodular Lie groups, and not sufficient for 3-dimensional non unimodular Lie groups. As a consequence...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2008
Main Authors: Bromberg, S., Medina, A.
Format: Article
Language:English
Published: Інститут математики НАН України 2008
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/148001
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds / S. Bromberg, A. Medina // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148001
record_format dspace
spelling Bromberg, S.
Medina, A.
2019-02-16T16:24:54Z
2019-02-16T16:24:54Z
2008
Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds / S. Bromberg, A. Medina // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 8 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 53C22; 53C50; 57M50; 22E30
https://nasplib.isofts.kiev.ua/handle/123456789/148001
In this work it is shown that a necessary condition for the completeness of the geodesics of left invariant pseudo-Riemannian metrics on Lie groups is also sufficient in the case of 3-dimensional unimodular Lie groups, and not sufficient for 3-dimensional non unimodular Lie groups. As a consequence it is possible to identify, amongst the compact locally homogeneous Lorentzian 3-manifolds with non compact (local) isotropy group, those that are geodesically complete.
The authors wish to thank the anonymous referee for the careful reading and the pertinent observations that led, in particular, to a revision of the proof of Lemma 4 and to reformulate accordingly Proposition 5.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds
spellingShingle Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds
Bromberg, S.
Medina, A.
title_short Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds
title_full Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds
title_fullStr Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds
title_full_unstemmed Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds
title_sort geodesically complete lorentzian metrics on some homogeneous 3 manifolds
author Bromberg, S.
Medina, A.
author_facet Bromberg, S.
Medina, A.
publishDate 2008
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In this work it is shown that a necessary condition for the completeness of the geodesics of left invariant pseudo-Riemannian metrics on Lie groups is also sufficient in the case of 3-dimensional unimodular Lie groups, and not sufficient for 3-dimensional non unimodular Lie groups. As a consequence it is possible to identify, amongst the compact locally homogeneous Lorentzian 3-manifolds with non compact (local) isotropy group, those that are geodesically complete.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148001
citation_txt Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds / S. Bromberg, A. Medina // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT brombergs geodesicallycompletelorentzianmetricsonsomehomogeneous3manifolds
AT medinaa geodesicallycompletelorentzianmetricsonsomehomogeneous3manifolds
first_indexed 2025-12-07T21:01:47Z
last_indexed 2025-12-07T21:01:47Z
_version_ 1850884811872272384