Dunkl Hyperbolic Equations
We introduce and study the Dunkl symmetric systems. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite speed of it. Next the semi-linear Dunkl-wave equations are also studied.
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2008 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2008
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/148077 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Dunkl Hyperbolic Equations / H. Mejjaoli // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 34 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148077 |
|---|---|
| record_format |
dspace |
| spelling |
Mejjaoli, H. 2019-02-16T20:42:30Z 2019-02-16T20:42:30Z 2008 Dunkl Hyperbolic Equations / H. Mejjaoli // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 34 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35L05; 22E30 https://nasplib.isofts.kiev.ua/handle/123456789/148077 We introduce and study the Dunkl symmetric systems. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite speed of it. Next the semi-linear Dunkl-wave equations are also studied. This paper is a contribution to the Special Issue on Dunkl Operators and Related Topics. We would like to thank Professor Khalifa Trim`eche for his help and encouragement. Thanks are also due to the referees and editors for their suggestions and comments. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Dunkl Hyperbolic Equations Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Dunkl Hyperbolic Equations |
| spellingShingle |
Dunkl Hyperbolic Equations Mejjaoli, H. |
| title_short |
Dunkl Hyperbolic Equations |
| title_full |
Dunkl Hyperbolic Equations |
| title_fullStr |
Dunkl Hyperbolic Equations |
| title_full_unstemmed |
Dunkl Hyperbolic Equations |
| title_sort |
dunkl hyperbolic equations |
| author |
Mejjaoli, H. |
| author_facet |
Mejjaoli, H. |
| publishDate |
2008 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We introduce and study the Dunkl symmetric systems. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite speed of it. Next the semi-linear Dunkl-wave equations are also studied.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148077 |
| citation_txt |
Dunkl Hyperbolic Equations / H. Mejjaoli // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 34 назв. — англ. |
| work_keys_str_mv |
AT mejjaolih dunklhyperbolicequations |
| first_indexed |
2025-11-30T17:43:28Z |
| last_indexed |
2025-11-30T17:43:28Z |
| _version_ |
1850858331807154176 |