A Limit Relation for Dunkl-Bessel Functions of Type A and B

We prove a limit relation for the Dunkl-Bessel function of type BN with multiplicity parameters k₁ on the roots ±ei and k₂ on ±ei±ej where k₁ tends to infinity and the arguments are suitably scaled. It gives a good approximation in terms of the Dunkl-type Bessel function of type An₋₁orresponding lim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2008
Hauptverfasser: Rösler, M., Voit, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148078
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A Limit Relation for Dunkl-Bessel Functions of Type A and B / M. Rösler, M. Voit // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148078
record_format dspace
spelling Rösler, M.
Voit, M.
2019-02-16T20:43:17Z
2019-02-16T20:43:17Z
2008
A Limit Relation for Dunkl-Bessel Functions of Type A and B / M. Rösler, M. Voit // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 17 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 33C67; 43A85; 20F55
https://nasplib.isofts.kiev.ua/handle/123456789/148078
We prove a limit relation for the Dunkl-Bessel function of type BN with multiplicity parameters k₁ on the roots ±ei and k₂ on ±ei±ej where k₁ tends to infinity and the arguments are suitably scaled. It gives a good approximation in terms of the Dunkl-type Bessel function of type An₋₁orresponding limit relation for Bessel functions on matrix cones.
This paper is a contribution to the Special Issue on Dunkl Operators and Related Topics.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
A Limit Relation for Dunkl-Bessel Functions of Type A and B
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A Limit Relation for Dunkl-Bessel Functions of Type A and B
spellingShingle A Limit Relation for Dunkl-Bessel Functions of Type A and B
Rösler, M.
Voit, M.
title_short A Limit Relation for Dunkl-Bessel Functions of Type A and B
title_full A Limit Relation for Dunkl-Bessel Functions of Type A and B
title_fullStr A Limit Relation for Dunkl-Bessel Functions of Type A and B
title_full_unstemmed A Limit Relation for Dunkl-Bessel Functions of Type A and B
title_sort limit relation for dunkl-bessel functions of type a and b
author Rösler, M.
Voit, M.
author_facet Rösler, M.
Voit, M.
publishDate 2008
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We prove a limit relation for the Dunkl-Bessel function of type BN with multiplicity parameters k₁ on the roots ±ei and k₂ on ±ei±ej where k₁ tends to infinity and the arguments are suitably scaled. It gives a good approximation in terms of the Dunkl-type Bessel function of type An₋₁orresponding limit relation for Bessel functions on matrix cones.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148078
citation_txt A Limit Relation for Dunkl-Bessel Functions of Type A and B / M. Rösler, M. Voit // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT roslerm alimitrelationfordunklbesselfunctionsoftypeaandb
AT voitm alimitrelationfordunklbesselfunctionsoftypeaandb
AT roslerm limitrelationfordunklbesselfunctionsoftypeaandb
AT voitm limitrelationfordunklbesselfunctionsoftypeaandb
first_indexed 2025-11-30T22:06:53Z
last_indexed 2025-11-30T22:06:53Z
_version_ 1850858569187983360