Noncommutative Phase Spaces by Coadjoint Orbits Method

We introduce noncommutative phase spaces by minimal couplings (usual one, dual one and their mixing). We then realize some of them as coadjoint orbits of the anisotropic Newton-Hooke groups in two- and three-dimensional spaces. Through these constructions the positions and the momenta of the phase s...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2011
Автори: Ngendakumana, A., Nzotungicimpaye, J., Todjihounde, L.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/148081
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Noncommutative Phase Spaces by Coadjoint Orbits Method / A. Ngendakumana, J. Nzotungicimpaye, L. Todjihounde // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148081
record_format dspace
spelling Ngendakumana, A.
Nzotungicimpaye, J.
Todjihounde, L.
2019-02-16T20:46:25Z
2019-02-16T20:46:25Z
2011
Noncommutative Phase Spaces by Coadjoint Orbits Method / A. Ngendakumana, J. Nzotungicimpaye, L. Todjihounde // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 22E60; 22E70; 37J15; 53D05; 53D17
DOI: http://dx.doi.org/10.3842/SIGMA.2011.116
https://nasplib.isofts.kiev.ua/handle/123456789/148081
We introduce noncommutative phase spaces by minimal couplings (usual one, dual one and their mixing). We then realize some of them as coadjoint orbits of the anisotropic Newton-Hooke groups in two- and three-dimensional spaces. Through these constructions the positions and the momenta of the phase spaces do not commute due to the presence of a magnetic field and a dual magnetic field.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Noncommutative Phase Spaces by Coadjoint Orbits Method
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Noncommutative Phase Spaces by Coadjoint Orbits Method
spellingShingle Noncommutative Phase Spaces by Coadjoint Orbits Method
Ngendakumana, A.
Nzotungicimpaye, J.
Todjihounde, L.
title_short Noncommutative Phase Spaces by Coadjoint Orbits Method
title_full Noncommutative Phase Spaces by Coadjoint Orbits Method
title_fullStr Noncommutative Phase Spaces by Coadjoint Orbits Method
title_full_unstemmed Noncommutative Phase Spaces by Coadjoint Orbits Method
title_sort noncommutative phase spaces by coadjoint orbits method
author Ngendakumana, A.
Nzotungicimpaye, J.
Todjihounde, L.
author_facet Ngendakumana, A.
Nzotungicimpaye, J.
Todjihounde, L.
publishDate 2011
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We introduce noncommutative phase spaces by minimal couplings (usual one, dual one and their mixing). We then realize some of them as coadjoint orbits of the anisotropic Newton-Hooke groups in two- and three-dimensional spaces. Through these constructions the positions and the momenta of the phase spaces do not commute due to the presence of a magnetic field and a dual magnetic field.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148081
citation_txt Noncommutative Phase Spaces by Coadjoint Orbits Method / A. Ngendakumana, J. Nzotungicimpaye, L. Todjihounde // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.
work_keys_str_mv AT ngendakumanaa noncommutativephasespacesbycoadjointorbitsmethod
AT nzotungicimpayej noncommutativephasespacesbycoadjointorbitsmethod
AT todjihoundel noncommutativephasespacesbycoadjointorbitsmethod
first_indexed 2025-12-07T15:23:14Z
last_indexed 2025-12-07T15:23:14Z
_version_ 1850863511537713152