The Non-Autonomous Chiral Model and the Ernst Equation of General Relativity in the Bidifferential Calculus Framework

The non-autonomous chiral model equation for an m×m matrix function on a two-dimensional space appears in particular in general relativity, where for m=2 a certain reduction of it determines stationary, axially symmetric solutions of Einstein's vacuum equations, and for m=3 solutions of the Ein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2011
Hauptverfasser: Dimakis, A., Kanning, N., Müller-Hoissen, F.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2011
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148083
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Non-Autonomous Chiral Model and the Ernst Equation of General Relativity in the Bidifferential Calculus Framework / A. Dimakis, N. Kanning, F. Müller-Hoissen // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 57 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The non-autonomous chiral model equation for an m×m matrix function on a two-dimensional space appears in particular in general relativity, where for m=2 a certain reduction of it determines stationary, axially symmetric solutions of Einstein's vacuum equations, and for m=3 solutions of the Einstein-Maxwell equations. Using a very simple and general result of the bidifferential calculus approach to integrable partial differential and difference equations, we generate a large class of exact solutions of this chiral model. The solutions are parametrized by a set of matrices, the size of which can be arbitrarily large. The matrices are subject to a Sylvester equation that has to be solved and generically admits a unique solution. By imposing the aforementioned reductions on the matrix data, we recover the Ernst potentials of multi-Kerr-NUT and multi-Deminski-Newman metrics.