Evaluation of Neonatal Brain Development Using Acoustic Radiation Force Impulse Imaging (ARFI)
We applied acoustic radiation force impulse imaging (ARFI) for examination of the brains of 41 neonatal infants of different gestational ages. We used a new technical index, Virtual Touch tissue quantification (VTQ), to evaluate elastic properties of the brain tissues. Different brain tissues dem...
Gespeichert in:
| Veröffentlicht in: | Нейрофизиология |
|---|---|
| Datum: | 2015 |
| Hauptverfasser: | , , , , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут фізіології ім. О.О. Богомольця НАН України
2015
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/148212 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Evaluation of Neonatal Brain Development Using Acoustic Radiation Force Impulse Imaging (ARFI) / Y. Su, J. Ma, L.F. Du, J. Xia, Y. Wu, X. Jia, Y.G. Cai, Y.H. Li, J. Zhao, Q. Liu // Нейрофизиология. — 2015. — Т. 47, № 4. — С. 375-379. — Бібліогр.: 27 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148212 |
|---|---|
| record_format |
dspace |
| spelling |
Su, Y. Ma, J. Du, L.F. Xia, J. Wu, Y. Jia, X. Cai, Y.G. Li, Y.H. Zhao, J. Liu, Q. 2019-02-17T17:46:27Z 2019-02-17T17:46:27Z 2015 Evaluation of Neonatal Brain Development Using Acoustic Radiation Force Impulse Imaging (ARFI) / Y. Su, J. Ma, L.F. Du, J. Xia, Y. Wu, X. Jia, Y.G. Cai, Y.H. Li, J. Zhao, Q. Liu // Нейрофизиология. — 2015. — Т. 47, № 4. — С. 375-379. — Бібліогр.: 27 назв. — англ. 0028-2561 https://nasplib.isofts.kiev.ua/handle/123456789/148212 612.82:591.31 We applied acoustic radiation force impulse imaging (ARFI) for examination of the brains of 41 neonatal infants of different gestational ages. We used a new technical index, Virtual Touch tissue quantification (VTQ), to evaluate elastic properties of the brain tissues. Different brain tissues demonstrated different values of this index. The greater the gestational age, the higher the VTQ value. We conclude that ARFI provides a new quantitative index to evaluate the level of neonatal brain development and increases the objectivity and reliability of clinical analysis. The method is noninvasive, safe, simple, convenient, and can be extensively applied in clinics. Досліджували результати візуалізації впливу силових імпульсів акустичного випромінювання (ARFI), вивчаючи головний мозок 41 новонародженого з різними термінами гестації. Ми використовували новий технічний індекс Virtual Touch Quantification (VTQ) для оцінки еластичних властивостей тканин мозку. У різних тканин мозку значення даного індексу були відмінними. Ми дійшли висновку, що методика ARFI дозволяє отримати новий кількісний показник для оцінки ступеню розвитку неонатального мозку; це збільшує об’єктивність та надійність клінічних аналізів. Метод є неінвазивним, безпечним, простим та зручним і може знайти широке застосування в клініці. We want to thank the pediatricians who provided clinical data for us. We thank Xia Jin, Fang Min, Gao LinLin, et al. (the Newborn Department of Pediatrics of our hospital) for their helpful contributions. en Інститут фізіології ім. О.О. Богомольця НАН України Нейрофизиология Evaluation of Neonatal Brain Development Using Acoustic Radiation Force Impulse Imaging (ARFI) Оцінка розвитку мозку новонароджених із використанням візуалізації ефектів силових імпульсів акустичного випромінювання (ARFI) Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Evaluation of Neonatal Brain Development Using Acoustic Radiation Force Impulse Imaging (ARFI) |
| spellingShingle |
Evaluation of Neonatal Brain Development Using Acoustic Radiation Force Impulse Imaging (ARFI) Su, Y. Ma, J. Du, L.F. Xia, J. Wu, Y. Jia, X. Cai, Y.G. Li, Y.H. Zhao, J. Liu, Q. |
| title_short |
Evaluation of Neonatal Brain Development Using Acoustic Radiation Force Impulse Imaging (ARFI) |
| title_full |
Evaluation of Neonatal Brain Development Using Acoustic Radiation Force Impulse Imaging (ARFI) |
| title_fullStr |
Evaluation of Neonatal Brain Development Using Acoustic Radiation Force Impulse Imaging (ARFI) |
| title_full_unstemmed |
Evaluation of Neonatal Brain Development Using Acoustic Radiation Force Impulse Imaging (ARFI) |
| title_sort |
evaluation of neonatal brain development using acoustic radiation force impulse imaging (arfi) |
| author |
Su, Y. Ma, J. Du, L.F. Xia, J. Wu, Y. Jia, X. Cai, Y.G. Li, Y.H. Zhao, J. Liu, Q. |
| author_facet |
Su, Y. Ma, J. Du, L.F. Xia, J. Wu, Y. Jia, X. Cai, Y.G. Li, Y.H. Zhao, J. Liu, Q. |
| publishDate |
2015 |
| language |
English |
| container_title |
Нейрофизиология |
| publisher |
Інститут фізіології ім. О.О. Богомольця НАН України |
| format |
Article |
| title_alt |
Оцінка розвитку мозку новонароджених із використанням візуалізації ефектів силових імпульсів акустичного випромінювання (ARFI) |
| description |
We applied acoustic radiation force impulse imaging (ARFI) for examination of the brains of
41 neonatal infants of different gestational ages. We used a new technical index, Virtual Touch
tissue quantification (VTQ), to evaluate elastic properties of the brain tissues. Different brain
tissues demonstrated different values of this index. The greater the gestational age, the higher
the VTQ value. We conclude that ARFI provides a new quantitative index to evaluate the
level of neonatal brain development and increases the objectivity and reliability of clinical
analysis. The method is noninvasive, safe, simple, convenient, and can be extensively applied
in clinics.
Досліджували результати візуалізації впливу силових імпульсів акустичного випромінювання (ARFI), вивчаючи
головний мозок 41 новонародженого з різними термінами гестації. Ми використовували новий технічний індекс
Virtual Touch Quantification (VTQ) для оцінки еластичних
властивостей тканин мозку. У різних тканин мозку значення даного індексу були відмінними. Ми дійшли висновку,
що методика ARFI дозволяє отримати новий кількісний показник для оцінки ступеню розвитку неонатального мозку;
це збільшує об’єктивність та надійність клінічних аналізів.
Метод є неінвазивним, безпечним, простим та зручним і
може знайти широке застосування в клініці.
|
| issn |
0028-2561 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148212 |
| citation_txt |
Evaluation of Neonatal Brain Development Using Acoustic Radiation Force Impulse Imaging (ARFI) / Y. Su, J. Ma, L.F. Du, J. Xia, Y. Wu, X. Jia, Y.G. Cai, Y.H. Li, J. Zhao, Q. Liu // Нейрофизиология. — 2015. — Т. 47, № 4. — С. 375-379. — Бібліогр.: 27 назв. — англ. |
| work_keys_str_mv |
AT suy evaluationofneonatalbraindevelopmentusingacousticradiationforceimpulseimagingarfi AT maj evaluationofneonatalbraindevelopmentusingacousticradiationforceimpulseimagingarfi AT dulf evaluationofneonatalbraindevelopmentusingacousticradiationforceimpulseimagingarfi AT xiaj evaluationofneonatalbraindevelopmentusingacousticradiationforceimpulseimagingarfi AT wuy evaluationofneonatalbraindevelopmentusingacousticradiationforceimpulseimagingarfi AT jiax evaluationofneonatalbraindevelopmentusingacousticradiationforceimpulseimagingarfi AT caiyg evaluationofneonatalbraindevelopmentusingacousticradiationforceimpulseimagingarfi AT liyh evaluationofneonatalbraindevelopmentusingacousticradiationforceimpulseimagingarfi AT zhaoj evaluationofneonatalbraindevelopmentusingacousticradiationforceimpulseimagingarfi AT liuq evaluationofneonatalbraindevelopmentusingacousticradiationforceimpulseimagingarfi AT suy ocínkarozvitkumozkunovonarodženihízvikoristannâmvízualízacííefektívsilovihímpulʹsívakustičnogovipromínûvannâarfi AT maj ocínkarozvitkumozkunovonarodženihízvikoristannâmvízualízacííefektívsilovihímpulʹsívakustičnogovipromínûvannâarfi AT dulf ocínkarozvitkumozkunovonarodženihízvikoristannâmvízualízacííefektívsilovihímpulʹsívakustičnogovipromínûvannâarfi AT xiaj ocínkarozvitkumozkunovonarodženihízvikoristannâmvízualízacííefektívsilovihímpulʹsívakustičnogovipromínûvannâarfi AT wuy ocínkarozvitkumozkunovonarodženihízvikoristannâmvízualízacííefektívsilovihímpulʹsívakustičnogovipromínûvannâarfi AT jiax ocínkarozvitkumozkunovonarodženihízvikoristannâmvízualízacííefektívsilovihímpulʹsívakustičnogovipromínûvannâarfi AT caiyg ocínkarozvitkumozkunovonarodženihízvikoristannâmvízualízacííefektívsilovihímpulʹsívakustičnogovipromínûvannâarfi AT liyh ocínkarozvitkumozkunovonarodženihízvikoristannâmvízualízacííefektívsilovihímpulʹsívakustičnogovipromínûvannâarfi AT zhaoj ocínkarozvitkumozkunovonarodženihízvikoristannâmvízualízacííefektívsilovihímpulʹsívakustičnogovipromínûvannâarfi AT liuq ocínkarozvitkumozkunovonarodženihízvikoristannâmvízualízacííefektívsilovihímpulʹsívakustičnogovipromínûvannâarfi |
| first_indexed |
2025-11-24T20:39:06Z |
| last_indexed |
2025-11-24T20:39:06Z |
| _version_ |
1850492921426477056 |
| fulltext |
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 4 375
UDC 612.82:591.31
Y. SU,1 J. MA,2 L. F. DU,1 J. XIA,1 Y. WU,1 X. JIA,1 Y. G. CAI,1 Y. H. LI,1 J. ZHAO,1 and Q. LIU1
EVALUATION OF NEONATAL BRAIN DEVELOPMENT USING
ACOUSTIC RADIATION FORCE IMPULSE IMAGING (ARFI)
Received March 23, 2014
We applied acoustic radiation force impulse imaging (ARFI) for examination of the brains of
41 neonatal infants of different gestational ages. We used a new technical index, Virtual Touch
tissue quantification (VTQ), to evaluate elastic properties of the brain tissues. Different brain
tissues demonstrated different values of this index. The greater the gestational age, the higher
the VTQ value. We conclude that ARFI provides a new quantitative index to evaluate the
level of neonatal brain development and increases the objectivity and reliability of clinical
analysis. The method is noninvasive, safe, simple, convenient, and can be extensively applied
in clinics.
Keywords: neonatal infants, brain development, acoustic radiation force impulse
imaging.
1Department of Ultrasound and Newborn Pediatrics, Shanghai First People’s
Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
2Department of Cardiovascular Ultrasound, Shanghai East Hospital Affiliated
to the Tongji University, Shanghai, China.
Correspondence should be addressed to L. F. Du
(e-mail: yjlfcn@126.com).
INTRODUCTION
Within the neonatal period, brain tissue and cerebral
functions are in the process of development. Because of
the existence of a variety of diseases, brain development
can be blocked or impaired. Brain damage resulting
from a number of reasons can cause functional and
structural abnormalities, e.g., clinical manifestations of
cerebral palsy, epilepsy and other neurological diseases
[1-3]. The data of head ultrasound examination for
objective diagnosis of neonatal cerebral diseases is
of great significance. The echo intensity in cerebral
ultrasound observations provides information on the
brain size, width of the gyri, and other characteristics,
which can help one to prognose mature conditions of
the neonatal brain development and to present different
characteristics related to both norm and pathology [4-7].
At the same time, how to quantify sufficiently accurately
the respective changes to guide the evaluation of the
degree of brain development is still a clinical problem
remaining to be resolved [8-10]. Acoustic radiation
force impulse imaging (ARFI) is a relatively novel
sophisticated technique for evaluating the maturity of
the infant brain. At present, ARFI has been widely used
for examinations of the liver, kidneys, thyroid, breast,
pancreas, and so on [11-16]. At the same time, ARFI
has been used for examination of the brain to a limited
extent.
We have quantitatively analyzed neonatal cerebral
white and gray matters within different gestational
ages using Virtual Touch tissue quantification (VTQ)
of ARFI, and here we discuss the value of VTQ to
evaluate certain aspects of neonatal brain development.
METHODS
Patients. We examined 41 newborns from the
Department of gynecology and obstetrics of the
First Hospital affiliated to the Shanghai Jiaotong
University. In this group, there were 22 boys and 19
girls; gestational ages were < 37 weeks (16 cases) and
≥ 37 weeks (25 cases). All neonates were classified
with respect to their gestational ages (AGA) using the
respective scale. The exclusion criteria were jaundice
of the newborn, aspiration pneumonia, neonatal brain
injury, pregnancy complicated with diabetes mellitus,
pregnancy-induced hypertension, anemia, and heart
and lung diseases.
Acquisition of the ARFI. Real-time ARFI was
performed using the Siemens Acuson S2000 diagnostic
ultrasound system (Siemens Medical Solutions,
Germany) equipped with a 4C1 (3.5 MHz) probe. All
examinations were performed in succession by two
independent sonographers. Both of them had more
than ten years experience in ultrasonic scanning. They
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 4376
Y. SU, J. MA, L. F. DU, et al.
the cerebral transverse diameter, width of the lateral
ventricle, and width of the superior frontal gyrus. A
color Doppler technique was used to access the blood
supply of the brains, including the middle cerebral
artery, anterior cerebral artery, posterior cerebral
artery, and vertebral basilar artery.
ARFI. An ARFI elastic model, VTQ, was used
to measure the elasticity of neonatal cerebral white
and gray matters, which included the parietal white
matter, thalamic nuclei, basal ganglia, cerebellum,
hippocampus, medulla oblongata, and cerebral falx.
Virtual Touch Tissue Quantification. In the VTQ
model, a ROI (5×10 mm) was placed inside the brain,
and the depth of the ROI was less than 80 mm. All
the structures of the newborn brain could be observed.
To measure more accurately and objectively derived
elastic parameters, operators were asked to handle
the probe on the cranial surface with special care
and accuracy. The measurements were repeated three
times randomly, and the average value (m/sec) was
calculated for the VTQ index.
Statistical Analysis. For all statistical analysis
procedures, we used SPSS (version 17.0) software
(SPSS Inc, USA). All measured data were presented
as means ± s.d. The groups of premature and full-
term infants were compared using the Student’s test
and analysis of variance. P < 0.05 was considered
an indication of statistically significant intergroup
difference.
RESULTS
Echo Intensity Quantitative Analysis. We used VTQ
to quantitatively analyze the echo intensity in different
parts of the brain tissues. It was found that the mean
value of VTQ of the parietal white matter was 1.34 ±
± 0.33 m/sec, that of the thalamic and basal ganglia
was 1.53 ± 0.35 m/sec, that of the cerebellum was
1.62 ± 0.31 m/sec, and that of the cerebral falx was
2.23 ± 0.48 m/sec (Fig. 1A-C).
We measured the value of VTQ of the echo intensity
in different parts of brain tissues in the examined
infants of different gestational ages. As was observed,
the VTQ value of the parietal white matter, thalamic and
basal ganglia, cerebellum, and cerebral falx increased
gradually with increased gestational age. The values
of VTQ of preterm infants were significantly lower
than those of full-term infants (P < 0.05) (Table 1;
Fig. 2).
F i g. 1. Value of VTQ of different parts of the brain in a full-term
infant. A) Parietal white matter, 1.26 m/sec; B) thalamic and basal
ganglia, 1.46 m/sec, and C) cerebellum, 1.65 m/sec.
Р и с. 1. Значення VTQ у різних частинах мозку доношеного
новонародженого.
were blinded to the findings and physical examination
results when performing.
Conventional Ultrasound. Neonates 1 to 3 days
old were held in a supine position in a quiet state.
All participants were examined by brain US using
the anterior fontanelle as the acoustic window.
Conventional sonography was used to observe the
skull continuity (brain midline centered), brain
parenchyma, and lateral ventricle and to measure
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 4 377
EVALUATION OF NEONATAL BRAIN DEVELOPMENT USING ACOUSTIC RADIATION FORCE IMPULSE IMAGING (ARFI)
DISCUSSION
ARFI is a new elastic sound imaging technology. It
uses the acoustic radiation force to fire a pulse and
to cause instantaneous (<1 sec) and tiny micron-value
displacements in the ROI of the body. At the same
time, it produces a shear wave at transverse vibrations.
Using a computer, it is possible to test and calculate
the speed of the shear wave (shear wave velocity).
This shear wave velocity depends on elastic properties
of the tissue. The higher the shear wave velocity, the
greater the coefficient of elasticity. The virtual touch
tissue quantification (VTQ) of ARFI allows researchers
to measure these parameters more objectively [17-
21]. We successfully used this technology to evaluate
quantitatively the echo intensity in the neonatal brain.
Our study using echo-intensity quantitative
analysis demonstrated that tissues of different brain
parts in full-term infants showed the following mean
values of VTQ. In the parietal white matter, this was
1.34 ± 0.33 m/sec, in the thalamic and basal ganglia,
1.53 ± 0.35 m/sec (114%), in the cerebellum,
1.62 ± 0.31 m/sec (121%), and in the cerebral falx,
2.23 ± 0.48 m/sec (166%). The observed regularity
of increase was in accordance with the sequence of
brain development. This provides a more intuitive
understanding of the situation with the echo intensity
in different brain tissues.
The CNS is an ectodermal derivative. Myelination
of brain tissues takes place at about 20 weeks of
gestational age. The development goes, in general,
from the bottom to the top, from central to peripheral
regions, from dorsal to ventral parts, and from the
sensory systems to the motor ones. In other words, the
development of myelination in the brain goes from the
brainstem to the thalamic and basal ganglia, and to the
cortical hemispheres. It suggests that the development
and maturation of the thalamus occur earlier than those
of the cortex [22, 23].
Our results showed that the brain echo intensities
are dissimilar at different gestational ages. The values
of VTQ in preterm infants were obviously lower than
those in full-term infants. Thus, this index, similarly
to other indices, demonstrates with certainty that the
brains of preterm infants are more immature than those
of full-term infants [24, 25].
Neonatal head ultrasound examination is performed
using the anterior and lateral anterior fontanelle as
the acoustic windows for obtaining cerebral coronal
and sagittal scans. The advantages of this technique
are the following: bed check, no radiation damage,
low cost, no need for the patient to be calm, and the
possibility to be repeated many times. It is the first
choice for diagnosing premature infant brain injury.
Adequate experience of the operator is necessary, and
there are certain limitations related to craniocerebral
peripheral lesions. Therefore, such examination should
be combined with some other imaging examination
methods (such as MRI) [26, 27].
To sum up, the value of VTQ is a very useful
quantitative index in the evaluation of the peculiarities
of the neonate brain development. ARFI is a safe,
F i g. 2. The value of VTQ of the cerebellum in a preterm infant
(0.84 m/sec).
Р и с. 2. Значення VTQ у мозочку недоношеного новонародже-
ного.
Comparison of VTQ values between preterm and full-term infants
Порівняння значень VTQ у недоношених та доношених новонароджених
Position
VTQ (m/sec)
<37 weeks ≥37 weeks P
Parietal white matter 1.12±0.43 1.34±0.33 < 0.05
Thalamic nuclei 1.21±0.51 1.53±0.35 < 0.05
Cerebellum 1.33±0.41 1.62±0.31 < 0.05
Cerebral falx 1.95±0.52 2.23±0.48 < 0.05
Footnote: means ± s.d. are shown.
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 4378
Y. SU, J. MA, L. F. DU, et al.
noninvasive, simple, and convenient technology; it
can play a greater role not only in the evaluation of
the neonate brain development, but also in diagnosing
diseases of the neonate brain (including preterm and
full-term infants). While AFRI is still at a preliminary
clinical application stage, it is obvious that we must
observe more cases and accumulate experience.
Acknowledgements. We want to thank the pediatricians
who provided clinical data for us. We thank Xia Jin, Fang Min,
Gao LinLin, et al. (the Newborn Department of Pediatrics of
our hospital) for their helpful contributions.
This study was conducted in accordance with the declaration
of Helsinki. This study was conducted with approval from the
Ethics Committee of the Shanghai First People’s Hospital,
School of Medicine, Shanghai Jiaotong University. Written
informed consent was obtained from all parents and responsible
physicians before ARFI examination.
The authors of this communication, Y. Su, J. Ma,
L. F. Du, J. Xia, Y. Wu, X. Jia, Y. G. Cai, Y. H. Li, J. Zhao, and
Q. Liu, confirm the absense of any conflict related to comercial
or financial interests, to interrelations with organizations
or persons in any way involved in the research, and to
interrelations of the co-authors.
Й. Су1, Дж. Ма2, Л. Ф. Ду1, Дж. Ксіа1, Й. Ву1, Кс. Джіа1,
Й. Ґ. Каі1, Ю. Х. Лі1, Дж. Жао1, К. Лю1
ОЦІНКА РОЗВИТКУ МОЗКУ НОВОНАРОДЖЕНИХ ІЗ
ВИКОРИСТАННЯМ ВІЗУАЛІЗАЦІЇ ЕФЕКТІВ СИЛО-
ВИХ ІМПУЛЬСІВ АКУСТИЧНОГО ВИПРОМІНЮВАННЯ
(ARFI)
1 Шанхайська перша народна лікарня Медичного факульте-
ту Шанхайського університету Джяотонг, Шанхай (Китай).
2 Шанхайська східна лікарня при Університеті Тонгджі,
Шанхай (Китай).
Р е з ю м е
Досліджували результати візуалізації впливу силових ім-
пульсів акустичного випромінювання (ARFI), вивчаючи
головний мозок 41 новонародженого з різними терміна-
ми гестації. Ми використовували новий технічний індекс
Virtual Touch Quantification (VTQ) для оцінки еластичних
властивостей тканин мозку. У різних тканин мозку значен-
ня даного індексу були відмінними. Ми дійшли висновку,
що методика ARFI дозволяє отримати новий кількісний по-
казник для оцінки ступеню розвитку неонатального мозку;
це збільшує об’єктивність та надійність клінічних аналізів.
Метод є неінвазивним, безпечним, простим та зручним і
може знайти широке застосування в клініці.
REFERENCES
1. N. Salmaso, S. Tomasi, and F. M. Vaccarino, “Neurogenesis
and maturation in neonatal brain injury,” Clin. Perinatol., 41,
229-239 (2014).
2. S. H. Kwon, L. Vasung, L. R. Ment, and P. S. Huppi, “The role
of neuroimaging in predicting neurodevelopmental outcomes
of preterm neonates,” Clin. Perinatol., 41, 257-283 (2014).
3. J. A. Dipietro, K. T. Kivlighan, K. A. Costigan, et al., “Prenatal
antecedents of newborn neurological maturation,” Child Dev.,
81, 115-130 (2010).
4. M. Eldib, A. N. Massaro, D. Bulas, and H. Aly, “Neuroimag-
ing and neurodevelopmental outcome of premature
infants,” Am. J. Perinatol., 27, 803-818 (2010).
5. L. M. Leijser, N. Vos, F. J. Walther, and G.van Wezel-
Meijler, “Brain ultrasound findings in neonates treated with
intrauterine transfusion for fetal anaemia,” Early Human
Dev., 88, 717-724 (2012).
6. R. K. Pooh, “Neurosonoembryology by three-dimensional
ultrasound,” Semin. Fetal Neonat. Med., 17, 261-268 (2012).
7. A. H. Whitaker, J. F. Feldman, J. M. Lorenz, et al., “Neonatal
head ultrasound abnormalities in preterm infants and
adolescent psychiatric disorders,” Arch. Gen. Psychiat., 68,
742-752 (2011).
8. L. Catte, B. Keersmaeker, and F. Claus, “Prenatal neurologic
anomalies: sonographic diagnosis and treatment,” Paediatr.
Drugs, 14, 143-155 (2012).
9. W. M. Gerdavan, J. S. Sylke, and M. L. Lara, “Cranial
ultrasonography in neonates: Role and limitations,” Seminars
Perinatol., 34, 28-38 (2010).
10. F. P. Nelly, E. Goya, J. Tomas, et al., “Quantitative tissue
echogenicity of the neonatal brain assessed by ultrasound
imaging,” Ultrasound Med. Biol., 35, 1421-1426 (2009).
11. Y. J. Su, L. F. Du, Y. Wu, et al., “Evaluation of cervical cancer
detection with acoustic radiation force impulse ultrasound
imaging,” Exp. Ther. Med., 5, 1715-1719 (2013).
12. G. Cui, Z. Yang, W. Zhang, et al., “Evaluation of acoustic
radiation force impulse imaging for the clinicopathological
typing of renal fibrosis,” Exp. Ther. Med., 7, 233-235 (2014).
13. X. J. Hou, A. X. Sun, X. L. Zhou, et al., “The application
of Virtual Touch tissue quantification (VTQ) in diagnosis of
thyroid lesions: a preliminary study,” Eur. J. Radiol., 82, 797-
801 (2013).
14. M. A. Mateen, K. A. Muheet, R. J. Mohan, et al., “Evaluation
of ultrasound based acoustic radiation force impulse (ARFI)
and eSie touch sonoelastography for diagnosis of inflammatory
pancreatic diseases,” JOP, 13, 36-44 (2012).
15. W. Meng, G. Zhang, C. Wu, et al., “Preliminary results of
acoustic radiation force impulse (ARFI) ultrasound imaging of
breast lesions,” Ultrasound Med. Biol., 37, 1436-1443 (2011).
16. M. T. Shuang, Z. Ping, Q. Ying, et al., “Usefulness of acoustic
radiation force impulse imaging in the differential diagnosis of
benign and malignant liver lesions,” Acad. Radiol., 18, 810-
815 (2011).
17. J. R. Doherty, J. J. Dahl, and G. E. Trahey, “Harmonic tracking
of acoustic radiation force-induced displacements,” IEEE
Trans. Ultrason. Ferroelectr. Freq. Control, 60, 2347-2358
(2013).
18. J. Zhan, X. H. Diao, Q. L. Chai, and Y. Chen, “Comparative
study of acoustic radiation force impulse imaging with real-
time elastography in differential diagnosis of thyroid nodules,”
Ultrasound Med. Biol., 39, 2217-2225 (2013).
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 4 379
EVALUATION OF NEONATAL BRAIN DEVELOPMENT USING ACOUSTIC RADIATION FORCE IMPULSE IMAGING (ARFI)
19. I. Sporea, O. H. Gilja, S. Bota, et al., “Liver elastography – an
update,” Med. Ultrason, 15, 304-314 (2013).
20. S. Wojcinski, K. Brandhorst, G. Sadigh, et al., “Acoustic
radiation force impulse imaging with Virtual Touch™ tissue
quantification: mean shear wave velocity of malignant and
benign breast masses,” Int. J. Womens Health, 30, 619-627
(2013).
21. M. Sugitani, Y. Fujita, Y. Yumoto, et al., “A new method for
measurement of placental elasticity: acoustic radiation force
impulse imaging,” Placenta, 34, 1009-1013 (2013).
22. O. Kenichi, M. Susumu, K. D. Pamela, et al., “Multi-contrast
human neonatal brain atlas: Application to normal neonate
development analysis,” NeuroImage, 56, 8-20 (2011).
23. C. M. Herba, S. J. Roza, P. Govaert, et al., “Infant brain
development and vulnerabili ty to later internalizing
difficulties: the generation R study,” J. Am. Acad. Child
Adolesc. Psychiat., 49, 1053-1063 (2010).
24. S. J. Steggerda, F. T. de Bruïne, V. E. Smits-Wintjens, et al.,
“Ultrasound detection of posterior fossa abnormalities in
full-term neonates,” Early Human Dev., 88, 233-239 (2012).
25. B. Helen, P. Chryssoula, N. Ioannis, et al., “Comparison of
findings on cranial ultrasound and magnetic resonance imaging
before discharge in preterm infants. Correlation with the
neurological examination,” Early Human Dev., 86, S29 (2010).
26. B. Gross, D. Garcia-Tapia, E. Riedesel, et al., “Normal canine
brain maturation at magnetic resonance imaging,” Vet. Radiol.
Ultrasound, 51, 361-373 (2010).
27. N. Tusor, T. Arichi, S. J. Counsell, and A. D. Edwards, “Brain
development in preterm infants assessed using advanced MRI
techniques,” Clin. Perinatol., 41, 25-45 (2014).
|