Stimulation of CB1 Cannabinoid and NMDA Receptors Increases Neuroprotective Effect Against Diazinon-Induced Neurotoxicity
Cannabinoids have been shown to exert a neuroprotective influence in organophosphorusinduced toxicity. In our study, we examined the effects of the cannabinoid receptor agonist WIN55,212-2 and NMDA receptor agonist NMDA on cell death in the pheochromocytoma cell line PC12 subjected to the action o...
Gespeichert in:
| Veröffentlicht in: | Нейрофизиология |
|---|---|
| Datum: | 2013 |
| Hauptverfasser: | , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут фізіології ім. О.О. Богомольця НАН України
2013
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/148243 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Stimulation of CB1 Cannabinoid and NMDA Receptors Increases Neuroprotective Effect Against Diazinon-Induced Neurotoxicity / F. Bahrami, M. Hashemi, F. Khalili, J. Hashemi, A. Asgari // Нейрофизиология. — 2013. — Т. 45, № 6. — С. 529-536. — Бібліогр.: 31 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148243 |
|---|---|
| record_format |
dspace |
| spelling |
Bahrami, F. Hashemi, M. Khalili, F. Hashemi, J. Asgari, A. 2019-02-17T18:44:21Z 2019-02-17T18:44:21Z 2013 Stimulation of CB1 Cannabinoid and NMDA Receptors Increases Neuroprotective Effect Against Diazinon-Induced Neurotoxicity / F. Bahrami, M. Hashemi, F. Khalili, J. Hashemi, A. Asgari // Нейрофизиология. — 2013. — Т. 45, № 6. — С. 529-536. — Бібліогр.: 31 назв. — англ. 0028-2561 https://nasplib.isofts.kiev.ua/handle/123456789/148243 615.917+612.822 Cannabinoids have been shown to exert a neuroprotective influence in organophosphorusinduced toxicity. In our study, we examined the effects of the cannabinoid receptor agonist WIN55,212-2 and NMDA receptor agonist NMDA on cell death in the pheochromocytoma cell line PC12 subjected to the action of an organophosphorus compound, diazinon. Diazinon decreased cell viability in a concentration-dependent manner. Following the exposure of PC12 cells to 200 µM diazinon for 48 h, reductions in cell survival and protein level of CB1 receptors were observed. Treatment of the cells with 0.1 µM WIN55,212-2 and 100 µM NMDA prior to diazinon exposure significantly elevated the cell survival level and protein level of CB1 receptors. The cannabinoid antagonist AM251 (1 µM) did not inhibit the neuroprotection effect induced by WIN55,212-2, indicating that the neuroprotective effect of this agonist was cannabinoid receptor-independent. The NMDA receptor antagonist MK-801 (1 µM) enhanced diazinon-mediated neurotoxicity suggesting that precisely NMDA receptors may play a protective role. Було показано, що канабіноїди забезпечують нейропротективний вплив у разі токсичності, індукованої фосфорорганічними сполуками. Ми досліджували впливи агоніста канабіноїдних рецепторів WIN55.212-2 та агоніста NMDAрецепторів на загибель культивованих клітин феохромоцитоми PC12, зумовлену дією фосфорорганічної сполуки діазинону. Діазинон зменшував життєздатність цих клітин, і його вплив був дозозалежним. Після експозиції клітин PC12 до 200 мкM діазинону спостерігалася посилена загибель даних клітин при зменшенні рівня білка рецепторів CB1. Дія на клітини 0.1 мкM WIN55,212-2 та 100 мкM NMDA, що передувала їх експозиції до діазинону, істотно підвищувала рівень виживання клітин та рівень протеїну згаданих рецепторів. Антагоніст канабіноїдів AM251 (1 мкM) не пригнічував нейропротективної дії WIN55,212-2, що свідчило про незалежність впливу даного агоніста від дії безпосередньо на канабіноїдні рецептори. Антагоніст NMDA-рецепторів MK-801 (1 мкM) посилював індуковані діазиноном нейротоксичні впливи. Це вказувало на те, що саме NMDA-рецептори, вірогідно, відіграють протективну роль в аналізованій ситуації. We thank Dr. Soheil Sadri for thoughtful comments on the manuscript. The authors also thank the grant supplier, the Neurosciences Research Center (Baqiyatallah University of Medical Sciences) en Інститут фізіології ім. О.О. Богомольця НАН України Нейрофизиология Stimulation of CB1 Cannabinoid and NMDA Receptors Increases Neuroprotective Effect Against Diazinon-Induced Neurotoxicity Стимуляція канабіноїдних рецепторів cb1 та NMDA-рецепторів посилює нейропротективні впливи в разі нейротоксичності, індукованої діазиноном Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Stimulation of CB1 Cannabinoid and NMDA Receptors Increases Neuroprotective Effect Against Diazinon-Induced Neurotoxicity |
| spellingShingle |
Stimulation of CB1 Cannabinoid and NMDA Receptors Increases Neuroprotective Effect Against Diazinon-Induced Neurotoxicity Bahrami, F. Hashemi, M. Khalili, F. Hashemi, J. Asgari, A. |
| title_short |
Stimulation of CB1 Cannabinoid and NMDA Receptors Increases Neuroprotective Effect Against Diazinon-Induced Neurotoxicity |
| title_full |
Stimulation of CB1 Cannabinoid and NMDA Receptors Increases Neuroprotective Effect Against Diazinon-Induced Neurotoxicity |
| title_fullStr |
Stimulation of CB1 Cannabinoid and NMDA Receptors Increases Neuroprotective Effect Against Diazinon-Induced Neurotoxicity |
| title_full_unstemmed |
Stimulation of CB1 Cannabinoid and NMDA Receptors Increases Neuroprotective Effect Against Diazinon-Induced Neurotoxicity |
| title_sort |
stimulation of cb1 cannabinoid and nmda receptors increases neuroprotective effect against diazinon-induced neurotoxicity |
| author |
Bahrami, F. Hashemi, M. Khalili, F. Hashemi, J. Asgari, A. |
| author_facet |
Bahrami, F. Hashemi, M. Khalili, F. Hashemi, J. Asgari, A. |
| publishDate |
2013 |
| language |
English |
| container_title |
Нейрофизиология |
| publisher |
Інститут фізіології ім. О.О. Богомольця НАН України |
| format |
Article |
| title_alt |
Стимуляція канабіноїдних рецепторів cb1 та NMDA-рецепторів посилює нейропротективні впливи в разі нейротоксичності, індукованої діазиноном |
| description |
Cannabinoids have been shown to exert a neuroprotective influence in organophosphorusinduced toxicity. In our study, we examined the effects of the cannabinoid receptor agonist
WIN55,212-2 and NMDA receptor agonist NMDA on cell death in the pheochromocytoma
cell line PC12 subjected to the action of an organophosphorus compound, diazinon. Diazinon
decreased cell viability in a concentration-dependent manner. Following the exposure of
PC12 cells to 200 µM diazinon for 48 h, reductions in cell survival and protein level of
CB1 receptors were observed. Treatment of the cells with 0.1 µM WIN55,212-2 and 100
µM NMDA prior to diazinon exposure significantly elevated the cell survival level and
protein level of CB1 receptors. The cannabinoid antagonist AM251 (1 µM) did not inhibit the
neuroprotection effect induced by WIN55,212-2, indicating that the neuroprotective effect of
this agonist was cannabinoid receptor-independent. The NMDA receptor antagonist MK-801
(1 µM) enhanced diazinon-mediated neurotoxicity suggesting that precisely NMDA receptors
may play a protective role.
Було показано, що канабіноїди забезпечують нейропротективний вплив у разі токсичності, індукованої фосфорорганічними сполуками. Ми досліджували впливи агоніста
канабіноїдних рецепторів WIN55.212-2 та агоніста NMDAрецепторів на загибель культивованих клітин феохромоцитоми PC12, зумовлену дією фосфорорганічної сполуки діазинону. Діазинон зменшував життєздатність цих клітин,
і його вплив був дозозалежним. Після експозиції клітин
PC12 до 200 мкM діазинону спостерігалася посилена загибель даних клітин при зменшенні рівня білка рецепторів CB1. Дія на клітини 0.1 мкM WIN55,212-2 та 100 мкM
NMDA, що передувала їх експозиції до діазинону, істотно підвищувала рівень виживання клітин та рівень протеїну згаданих рецепторів. Антагоніст канабіноїдів AM251 (1
мкM) не пригнічував нейропротективної дії WIN55,212-2,
що свідчило про незалежність впливу даного агоніста від
дії безпосередньо на канабіноїдні рецептори. Антагоніст
NMDA-рецепторів MK-801 (1 мкM) посилював індуковані
діазиноном нейротоксичні впливи. Це вказувало на те, що
саме NMDA-рецептори, вірогідно, відіграють протективну
роль в аналізованій ситуації.
|
| issn |
0028-2561 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148243 |
| citation_txt |
Stimulation of CB1 Cannabinoid and NMDA Receptors Increases Neuroprotective Effect Against Diazinon-Induced Neurotoxicity / F. Bahrami, M. Hashemi, F. Khalili, J. Hashemi, A. Asgari // Нейрофизиология. — 2013. — Т. 45, № 6. — С. 529-536. — Бібліогр.: 31 назв. — англ. |
| work_keys_str_mv |
AT bahramif stimulationofcb1cannabinoidandnmdareceptorsincreasesneuroprotectiveeffectagainstdiazinoninducedneurotoxicity AT hashemim stimulationofcb1cannabinoidandnmdareceptorsincreasesneuroprotectiveeffectagainstdiazinoninducedneurotoxicity AT khalilif stimulationofcb1cannabinoidandnmdareceptorsincreasesneuroprotectiveeffectagainstdiazinoninducedneurotoxicity AT hashemij stimulationofcb1cannabinoidandnmdareceptorsincreasesneuroprotectiveeffectagainstdiazinoninducedneurotoxicity AT asgaria stimulationofcb1cannabinoidandnmdareceptorsincreasesneuroprotectiveeffectagainstdiazinoninducedneurotoxicity AT bahramif stimulâcíâkanabínoídnihreceptorívcb1tanmdareceptorívposilûêneiroprotektivnívplivivrazíneirotoksičnostííndukovanoídíazinonom AT hashemim stimulâcíâkanabínoídnihreceptorívcb1tanmdareceptorívposilûêneiroprotektivnívplivivrazíneirotoksičnostííndukovanoídíazinonom AT khalilif stimulâcíâkanabínoídnihreceptorívcb1tanmdareceptorívposilûêneiroprotektivnívplivivrazíneirotoksičnostííndukovanoídíazinonom AT hashemij stimulâcíâkanabínoídnihreceptorívcb1tanmdareceptorívposilûêneiroprotektivnívplivivrazíneirotoksičnostííndukovanoídíazinonom AT asgaria stimulâcíâkanabínoídnihreceptorívcb1tanmdareceptorívposilûêneiroprotektivnívplivivrazíneirotoksičnostííndukovanoídíazinonom |
| first_indexed |
2025-11-27T00:43:45Z |
| last_indexed |
2025-11-27T00:43:45Z |
| _version_ |
1850789218611101696 |
| fulltext |
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 6 529
UDC 615.917+612.822
F. BAHRAMI1, M. HASHEMI4, F. KHALILI2, J. HASHEMI1, and A. ASGARI3
STIMULATION OF CB1 CANNABINOID AND NMDA RECEPTORS
INCREASES NEUROPROTECTIVE EFFECT AGAINST DIAZINON-INDUCED
NEUROTOXICITY
Received February 11, 2013
Cannabinoids have been shown to exert a neuroprotective influence in organophosphorus-
induced toxicity. In our study, we examined the effects of the cannabinoid receptor agonist
WIN55,212-2 and NMDA receptor agonist NMDA on cell death in the pheochromocytoma
cell line PC12 subjected to the action of an organophosphorus compound, diazinon. Diazinon
decreased cell viability in a concentration-dependent manner. Following the exposure of
PC12 cells to 200 µM diazinon for 48 h, reductions in cell survival and protein level of
CB1 receptors were observed. Treatment of the cells with 0.1 µM WIN55,212-2 and 100
µM NMDA prior to diazinon exposure significantly elevated the cell survival level and
protein level of CB1 receptors. The cannabinoid antagonist AM251 (1 µM) did not inhibit the
neuroprotection effect induced by WIN55,212-2, indicating that the neuroprotective effect of
this agonist was cannabinoid receptor-independent. The NMDA receptor antagonist MK-801
(1 µM) enhanced diazinon-mediated neurotoxicity suggesting that precisely NMDA receptors
may play a protective role.
Keywords: cannabinoids, diazinon, neuroprotection, neurotoxicity, PC12 cells, viability.
1-3 Baqiyatallah University of Medical Sciences (1 Neuroscience Research
Center, 2 Molecular Biology Research Center, Proteomic Division, and
3 Physiology and Biophysics Department), Tehran, Iran.
4 Tehran University of Medical Sciences, School of Advanced Technologies in
Medicine, Tehran, Iran.
Correspondence should be addressed to M. Hashemi
(e-mail: mansooreh.hashemi@yahoo.com).
INTRODUCTION
Diazinon (O,O-diethyl-O-[2-isopropyl-6-methyl-4-
pyrimidinyl] phosphorothioate) is an organophosphorus
(OP) agent widely used as a pesticide. Diazinon can
enter the organism through inhalation, ingestion, and/
or skin contact. This OP is a hydrophobic molecule
and, therefore, can easily penetrate biological
membranes, especially via phospholipid bilayers
[1]. Different studies showed that diazinon inhibits
acetylcholinesterase (AChE) activity and protein
synthesis in PC12 cells [2]. In other studies, it was
reported that this compound disturbs DNA synthesis in
and induces apoptosis of PC12 cells [3, 4]. Sublethal
concentrations of diazinon inhibit the outgrowth of
axon-like processes from differentiating mouse N2a
neuroblastoma and PC12 cells [4, 5].
Cannabinoids are a group of C21 compounds occur-
ring in the glandular hairs of Cannabis sativa. The
well-known representative cannabinoid is ∆9-tetra-
hydrocannabinol (∆9-THC) [6]. The endocannabinoid
system includes specific cannabinoid receptors (CB1
and CB2), their endogenous ligands, and enzymatic
systems of their biosynthesis and degradation [7]. Syn-
thetic and endogenous cannabinoids were shown to ex-
ert, under certain conditions, neuroprotective effects
in animals and in vitro models with respect to various
forms of neuronal injury, such as cerebral ischemia,
traumatic brain injury, toxicity, and neurodegenerative
disorders [8, 9]. In vitro and in vivo experiments dem-
onstrated that neuroprotective effects of cannabinoids
are probably not mediated via CB1 receptors [10, 11].
It is well established that NMDA and endogenous
cannabinoids display complex interactions in their
control of synaptic plasticity [12]. In particular, CB1
receptors are located presynaptically on glutamatergic
projections to the hippocampus. Thus, CB1 receptors
and glutamate receptors are expressed on the same
neuronal elements. These two receptor types were
found to display a complex signaling interaction in
primary hippocampal neuron cultures [13].
PC12 cells (a neuronal model cell line) are
widely used as an in vitro model in investigations of
development, pathogenesis, and toxicity. PC12 cells
were shown to express cannabinoid CB1 receptors
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 6530
F. BAHRAMI, M. HASHEMI, F. KHALILI et al.
[14], although some reports suggest that the cells
are not endowed with this receptor type [15]. PC12
cells also seem to be a suitable system for studying
important features of NMDA receptors [16].
In our study, a toxicity model with diazinon as a
toxic agent was examined under in vitro conditions.
Then, the neuroprotective effects of the CB1 receptor
agonist WIN55,212-2 and NMDA receptor agonist
NMDA were assessed against diazinon-induced
toxicity in PC12 cells. Also, the CB1 receptor
antagonist AM251 and NMDA receptor antagonist
MK801 were used in our study. Finally, possible
interactions between CB1 receptors and ionotropic
glutamate receptors, including those of the NMDA
type, were examined in PC12 cells under conditions of
diazinon-induced toxicity. To date, there are no studies
of interactions between these two receptor types.
METHODS
Materials. The PC12 cell line was purchased
from the Pasteur Institute (Tehran, Iran). Dulbecco’s
modified Eagle’s medium (DMEM)/F12 and fetal
bovine serums (FBS) were obtained from Gibco
Life Technologies (USA). The CellTitre 96 AQueous
One Solution Cell Proliferation Assay Kit was
from Promega Corporation (USA). WIN55,212-2,
AM251 and N-methyl- D-aspartate (NMDA) were
purchased from Tocris (Great Britain); MK801,
diazinon, Triton X-100, and other chemicals were
from Sigma-Aldrich (USA). Rabbit polyclonal
ant ibody directed toward the CB1 receptor
(Sc-20754) and goat anti-rabbit IgG antibody
conjugated with horseradish peroxidase (Sc-2004)
were from Santa Cruz Biotechnology (USA).
Cell Culturing. PC12 cells were grown in the
DMEM supplemented with 10% FBS + 100 units/ml
antibiotic/antimycotic. These cells were then
incubated in a humidified chamber containing 5% CO2
at 37ºC. For the experiments, confluent cultures were
harvested with trypsin and then re-suspended in 5 ml
of the medium supplemented with FBS (to inactivate
trypsin). The cells were seeded into 6 well or 96 well
plates and allowed to adhere for 24 h at 37ºC in air
with 5% CO2.
Drug Exposure. Our treatment samples included the
following groups: (i) PC12 cells treated with 200 µM
diazinon, 0.1 µM cannabinoid receptor agonist
WIN55,212-2, 100 µM NMDA receptor agonist NMDA
and 1 µM MK801 in the separate groups for 48 h.
Pretreatment of PC12 cells with different drugs took place
15 min before exposure to diazinon. Diazinon itself was
in the well for 48 h. (ii) PC12 cells pretreated with 0.1 µM
WIN55,212-2 and then exposed to 200 µM diazinon.
(iii) PC12 cells pretreated with a cannabinoid receptor
antagonist AM251 (1 µM); then, WIN55,212-2 and
diazinon were added after another 15-min-long interval for
48 h (AM+WIN+DZ). (iv) In another group,
PC12 cells were pretreated with 100 µM NMDA
before being exposed to 200 µM diazinon for 48 h
(NMDA+DZ). (v) PC12 cells were pretreated with
1 µM MK801; then, NMDA was added; 15 min later,
diazinon was introduced for 48 h (MK+NMDA+DZ).
(vi) In this group, drugs were added, respectively, in
the group of WIN55,212-2, NMDA, and diazinon at
15-min-long intervals (WIN+NMDA+DZ). (vii) In this
group, WIN55,212-2, NMDA, MK801, and diazinon
were also added, respectively, at 15-min-long intervals
(WIN+NMDA+MK+DZ). (viii) In the final group,
WIN55,212-2, MK801, NMDA, and diazinon were
added in the order mentioned above also at 15-min-
long intervals (WIN+MK+NMDA+DZ). All drugs
(WIN55,212-2, AM251, NMDA, MK801, and diazinon)
were dissolved in dimethyl sulfoxide (DMSO) and diluted
in the culturing medium to the desired concentration.
The final concentration of DMSO was less than 0.1%, a
concentration that exerted no confounding effects on the
responses under study.
Measurement of Cell Viability. Cell viability
was measured using the CellTitre 96 AQueous One
Solution (MTS) Cell Proliferation Assay Kit. Cells
(104 per well in 200 µl medium) were seeded in
96 well plates and allowed to adhere for 24 h at 37ºC.
The medium was replaced with a fresh medium, and
cells were exposed to the medium containing 200 µM
diazinon or cannabinoid and to NMDA agonists and
antagonists with and without diazinon (incubation for
48 h at 37°C). The treatment media were removed,
and the cells were washed with phosphate buffer
saline (PBS). Then, 100 µl of the serum-free culture
medium containing 20 µl of CellTitre 96® AQueous
One Solution Reagent [3-(4,5-dimethylthiazol-
2-yl)-5-(3-carboxymethoxyphenyl)-2(4-sulfophenyl)-
2H-tetrazolium] MTS was added into each well of the
96-well assay plate and re-incubated for 2 h at 37ºC.
The absorbance of the sample was recorded at 490 nm
using a Wallac microplate reader. The MTS reduction
values were expressed as percentage of the control
(untreated cells).
Cell Lysis and Protein Assay. PC12 cells were
plated in 6-well culture plates at the density of
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 6 531
STIMULATION OF CB1 CANNABINOID AND NMDA RECEPTORS
106 cells/well. After 48-h-long treatment, cells were
lysed by the following procedure. The medium was
removed, and cells were washed twice with cold PBS.
Cells were then lysed in 500 µl of the lysis buffer (Tris-
HCl, 50 mM; NaCl, 500 mM; EDTA, 5 mM, and Triton
X-100, 0.2% v/v (pH 7.5) supplemented with protease
inhibitors. The cell lysate was sonicated for 1 min
on ice. Then, the lysate was centrifuged at 10,000 g
at 4ºC for 15 min. The supernatant was removed for
protein assay. The protein concentration was measured
using bovine serum albumin as a standard [17].
Analysis of CB1 Receptor Protein by Western
Blotting. The resulting supernatants were used for
quantitative analysis of the CB1 receptor amount
by Western Blotting. Each sample containing
20 µg protein was separated by SDS–polyacrylamide
gel electrophoresis (PAGE) on a 12% gel. After
electrophoresis, the protein was transferred to a
nitrocellulose membrane (20 V). Blots were blocked
with 5% fat-free milk in Tris-buffered saline containing
0.05% Tween 20 (TBS-T) for 1 h at room temperature.
The nitrocellulose membrane was incubated with 1
to 200 dilutions of rabbit polyclonal CB1R antibody
(sc-20754, Santa Cruz, USA) in 5% fat-free milk
TBS-T for overnight at 4ºC. After washing with TBS-T,
the nitrocellulose membrane was incubated with HRP-
conjugated anti-rabbit IgG (1 to 10,000 dilution) for
60 min. Finally, the nitrocellulose membrane was
incubated with the 3,3′,5,5′ tetramethybenzidine
(TMB) liquid substrate system until protein bands
appeared.
Statistical Analysis. In the Western Blot, protein
bands were quantified using densitometry by NIH
Imager software and normalized with respect to the
β-actin band intensity. Protein bands were expressed
as percentages of the control level. Numerical data are
presented below as means ± s.e.m. Statistical testing
used one-way analysis of variance followed by the
Tukey’s test. The criterion for statistical significance of
differences was P < 0.05 for all comparisons.
RESULTS
Cytotoxicity and Cell Viability of PC12 Cells at
Different Concentrations of Diazinon. To determine
whether diazinon is neurotoxic, its effect on the
viability of cultured PC12 cells was examined (Fig.
1). Survival of the cells was presented as a function
of the diazinon concentration after treatment,
using the MTS assay as a measure of cell viability.
Exposure of PC12 cells to 100 to 400 µM diazinon
reduced cell viability in a dose-dependent manner.
Concentrations of 300 and 400 µM were toxic to
the cells, and the rate of cell death increased. At
200 µM diazinon, cell survival was reduced to 20%
of the untreated cells (control) and was, therefore,
used for subsequent experiments on toxic effects
(a concentration that produced a submaximal effect on
cell viability) (Fig. 1, P < 0.05, one-way ANOVA).
In the previous study, different doses of WIN55,212-2
(0.1-100 µM) were assayed. WIN55,212-2 exerted
a neurotoxic effect at a 1 µM dose and higher with
respect to the control. WIN55,212-2 at a 0.1 µM
concentration was not toxic; this concentration
was, therefore, deemed appropriate for subsequent
experiments on neuroprotective effects in PC12
cells [10]. In addition, the protective effect of
0.1 µM WIN55,212-2 was examined in the presence of
different doses of diazinon. Any dose increase could
decrease the protective ability of WIN55,212-2 at
0.1 µM (Fig. 1, P < 0.05, one-way ANOVA).
Protective Effects of WIN55,212-2 Applied
Different Times Prior to Diazinon. The effects of
WIN55,212-2 were examined in cases where it was
applied at different time intervals prior to induction
of toxicity. Co-treatment of WIN55,212-2 with
diazinon was not effective. WIN55,212-2 application
for 15 min prior to diazinon provided better cell
0
20
40
60
80
100
120
%
Contr. 100 200 300 400 µM
*
**
***
***
+ ++
F i g. 1. Toxic effects of different concentrations of diazinon and
the protective influence of 0.1 mM WIN55,212-2 on cultured
pheochromocytoma PC12 cells. Concentrations of diazinon, µM,
are shown below the columns; Contr. is the control. Vertical scale)
Index of viability of PC12 cells, %; that in the control is taken as
100%. Gray columns, viability in the presence of diazinon; filled
columns, that in the presence of both diazinon and WIN55,212-2.
** and *** indicate significant intergroup differences vs control with
P < 0.01 and P < 0.001, respectively; + and ++ symbols indicate
cases with P < 0.05 and 0.01 in comparison with the diazinon group.
ANOVA + Tukey; n = 6 in all cases.
Р и с. 1. Токсичні ефекти діазинону в різних концентраціях
та протективний вплив 0.1 мкМ WIN55,212-2 на культивовані
клітини феохромоцитоми PC12.
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 6532
F. BAHRAMI, M. HASHEMI, F. KHALILI et al.
survival compared to the effect of diazinon alone.
At the same time, adding WIN55,212-2 24 h before
diazinon significantly reduced the protective effect
with respect to diazinon. Therefore, all pretreatments
with WIN55,212-2 were set to happen 15 min prior
to diazinon application (Fig. 2, P < 0.05, one-way
ANOVA).
WIN55,212-2 and Survival of PC12 Cells.
Incubation of PC12 cells with 200 µM diazinon for
48 h induced cell death up to 20% (P < 0.01). Cell
survival in the group treated with WIN55,212-2 alone
was greater. The addition to 0.1 µM WIN55,212-2
significantly increased PC12 cell survival (P < 0.01).
To determine whether the neuroprotective effect
of WIN55,212-2 was CB1 receptor-mediated, the
above receptors were blocked with its antagonist
AM251. The cells were treated with 1 µM AM251 for
15 min prior to incubation with 0.1 µM WIN55,212-2.
Under such conditions, the neuroprotective effect of
WIN55,212-2 was not abolished (Fig. 3, P < 0.05,
one-way ANOVA).
Protective Effect of NMDA on Diazinon-Induced
Toxicity. The treatment with 1 µM NMDA receptor
antagonist MK801 alone for 48 h somewhat worsened
cell survival, though insignificantly. At the same time,
cell survival in the group treated with the NMDA
receptor agonist (NMDA alone) for 48 h increased
the viability vs unexposed control cells (insignificant
increase). Diazinon (200 µM) alone killed 20% of the
cells. Pretreatment with NMDA not only prevented
the reduction of the cell number induced by 200 µM
diazinon, but it raised the viability by about 25%
(P < 0.01). To determine whether the viability increase
due to NMDA was mediated by receptors to the latter,
the cells were pretreated with the NMDA receptor
antagonist MK-801 followed by the addition of NMDA
and diazinon for 48 h. In this group (MK+NMDA+DZ),
MK-801, due to blocking of NMDA receptors,
increased the neurotoxicity of diazinon by about 15%.
(Fig. 4, P < 0.05, one-way ANOVA).
WIN55,212-2 and NMDA Interaction with Respect
to the Diazinon-Induced Toxicity. When WIN55,212-
2 and NMDA were used in combination, two groups
(WIN+NMDA+DZ and WIN+NMDA+MK801+DZ)
revealed neuroprotective effects (P < 0.05). At
the same time, cell survival in the WIN55,212-2 +
MK801+ + NMDA + diazinon group was significantly
lower (P < 0.05). We hypothesized that NMDA may
help WIN55,212-2 to protect cells against diazinon-
mediated neurotoxicity. Therefore, we pretreated
cultured cells with 1 µM MK801 for 15 min prior to
F i g. 2. Protective effect of 0.1 µM WIN55,212-2 against
200 mM diazinon (DZ)-induced toxicity, dependence on time prior
to the diazinon exposure (shown below the columns). Cell viability
was assessed 48 h after the beginning of incubation with diazinon.
Other designations are similar to those in Fig. 1.
Р и с. 2. Протективний вплив 0.1 мкM WIN55,212-2 в разі
нейротоксичного ефекту, індукованого 200 мкM діазинону:
залежність від інтервалу часу перед експозицією до діазинону.
0
20
40
60
80
100
120
%
Contr. DZ WIN WIN+ DZ AM+
WIN+DZ
**
++ ++ ++
F i g. 3. Effect of 0.1 µM WIN55,212-2 and 1 µM AM251 on
200 µM diazinon-induced cell death. Cell viability was
assessed 48 h after the beginning of incubation with diazinon;
WIN55,212-2 and AM251 were added 15 min before diazinon.
Agents added to the culture medium are shown below the columns.
Other designations are similar to those in Figs. 1 and 2.
Р и с. 3. Впливи 0.1 мкM WIN55,212-2 та 1 мкM AM251 на
клітинну загибель, індуковану 200 мкM діазинону.
0
20
40
60
80
100
120
%
DZ NMDA MK801 NMDA+
+ DZ
MK801+
+NMDA+DZ
**
++
+
Contr.
F i g. 4. Effects of a glutamate receptor agonist (NMDA) and an
antagonist (MK-801) on diazinon-induced neurotoxicity. PC12
cells were treated with 200 µM diazinon (DZ), NMDA, and
DZ added 15 min after NMDA in the presence or absence of
MK-801. Other designations are similar to those in Figs. 1-3.
Р и с. 4. Впливи агоніста глутаматних рецепторів NMDA та
антагоніста цих рецепторів MK-801 на нейротоксичні ефекти,
індуковані діазиноном.
0
20
40
60
80
100
120
%
Contr. DZ 0 min 15 min
DZ+WIN
24 h
t
**
++
+
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 6 533
STIMULATION OF CB1 CANNABINOID AND NMDA RECEPTORS
or 15 min after the addition of NMDA. The protective
effect of NMDA was completely blocked by MK-801
in this group (WIN+MK801+NMDA+DZ). It seems
that NMDA can help WIN55,212-2 to protect cells
when there was no MK801 or NMDA was not added
before MK801. Thus, the toxic effect in the group of
WIN+MK801+NMDA+DZ is significantly greater
than that in the diazinon group (Fig. 5, P < 0.05, one-
way ANOVA).
Levels of CB1 Receptor Protein in PC12
Cells Treated with Diazinon. The levels of CB1
receptor protein in unexposed control and diazinon-
exposed PC12 cells were assayed by Western Blot
analysis employing polyclonal anti-CB1 receptor
antibody. Protein bands with a molecular mass of
45-60 kDa were observed. Compared to that in
unexposed cells, the level of CB1 receptor protein
decreased significantly in the cells exposed to
200 µM diazinon (P < 0.001). The CB1 receptor
agonist alone (at a concentration used in this
experiment) exerted no significant effect on the CB1
receptor protein level in PC12 cells. In the presence
and absence of AM251, the level of CB1 receptor
protein was significantly higher as compared with
that in the diazinon alone group (P < 0.01). Similarly
to viability experiments, AM251 did not prevent
the increase of CB1 expression in the cells (Fig. 6,
P < 0.05, one-way ANOVA).
Levels of CB1 Receptor Protein at Interaction
of NMDA and WIN55,212-2. It was supposed that
NMDA would increase CB1 receptor expression
when applied in association with WIN55,212-2 in the
absence of MK801 or in the case where the latter was
applied before. In agreement with this supposition,
it was found that NMDA can help WIN55,212-2 in
CB1 receptor expression (WIN+NMDA+DZ and
WIN+NMDA+MK+DZ). However, inhibition of
NMDA receptors with MK801 application prior to
NMDA decreased CB1 receptor expression (Fig. 7,
P < 0.05, one-way ANOVA).
DISCUSSION
In our study, several concentrations of diazinon
were used to determine effective amounts of the
latter. Diazinon induced concentration-dependent
decreases in cell viability. Diazinon in the
200 µM dose decreased cell survival and CB1
receptor expression after 48 h-long exposure. In
our earlier works with OPs, we found that sublethal
0
20
40
60
80
100
120
%
Contr. DZ WIN+
+NMDA+DZ
WIN+
+NMDA+
+MK801+DZ
WIN+
+MK801+
+NMDA+ DZ
**
+ +
+
F i g. 5. Interaction between WIN55,212-2, an NMDA receptor
agonist, and an NMDA receptor antagonist in the effects against
diazinon-induced neurotoxicity. PC12 cells were treated by the
shown agents 15 min prior to diazinon. Other designations are
similar to those in Figs. 1-4.
Р и с. 5. Взаємодія WIN55,212-2, агоніста NMDA-рецепторів
та антагоніста цих рецепторів в їх впливах на нейротоксичні
ефекти діазинону.
CB1
β-actin
AM251
1
– – – – +
+
++
++–
+ –
–
–
2 3
В
С
А
4 5
WIN55,212-2
DZ
0
20
40
60
80
100
120
%
Contr. DZ WIN55,212-2 WIN + DZ AM251+
+WIN+ DZ
++
++
***
F i g. 6. Assay of CB1 receptor expression in PC12 cells. The
effect of cannabinoids on the levels of CB1 receptors in PC12
cells exposed to a sublethal concentration of diazinon (200 µM).
Solubilized PC12 cellular extracts were subjected to SDS-PAGE
(20 µg protein per lane), blotted to nitrocellulose membrane, and
incubated with rabbit antibody (Sc-20754) directed specifically
against CB1 receptors and followed with HRP-conjugated goat
anti-rabbit IgG (Sc-2004). A) Results of blotting; B) table of
the agents acting on the samples whose analysis is shown in A,
and C) mean densitometric indices of the band for CB1 (45-60 kDa)
normalized with respect to the β-actin band intensity and expressed
as percentage of the control level. Number of repetitions n = 3 in
all cases. Designations on panel C are similar to those in Figs. 1-5.
Р и с. 6. Експресії рецепторів CB1 у клітинах PC12.
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 6534
F. BAHRAMI, M. HASHEMI, F. KHALILI et al.
concentrations of diazinon inhibited the outgrowth
of axon-like processes and induced apoptosis of
differentiated PC12 cells [4, 18]. Other researchers
also reported that diazoxon inhibited AChE activity
and reduced transcripts of the α4 and β2 subunits of
nAChRs (at the mRNA level) in PC12 cells [2]. In
addition, expression of serotonergic neuronal markers
was detracted in PC12 cells [19].
In this study, we hypothesized that WIN55,212-
2 may protect PC12 cells against toxicity, and we
checked this hypothesis under in vitro conditions on
PC12 cells. It was found that WIN55,212-2 increases
cell survival and CB1 receptor expression. So, the
protective effect is obvious. According to earlier
studies, WIN55,212-2 demonstrated a protective
effect against toxic insults induced by glutamatergic
overstimulation [20], β-amyloid [21], hypoxic/
ischemic injury [22], and oxidative damage [23].
The molecular mechanisms of such neuroprotective
effect are still controversial but might involve
direct activation of pro-survival signalling pathways
including cannabinoid receptors (mainly CB1) [24].
In general, the protective effect of cannabinoids is
dependent on special conditions (such as adequate
doses and short exposure times) and may be related
to the enhancement of proliferation [25]. However,
high doses of these agents and long exposure times
inhibit cell growth and/or induce apoptosis via
activation of caspases 3 and 7 [26]. Consistent
with these studies, it was reported that the CB1
receptor agonist WIN55,212-2 protected PC12 cells
from diazinon-induced neurotoxicity in a low dose
(0.1 µM) and with a short exposure time (15 min).
Moreover, it was shown that WIN55,212-2 provided
neuroprotection is not mediated via direct cannabinoid
receptor activation. This finding was confirmed
using the CB1 receptor antagonist AM251. AM251
did not decrease the viability and CB1 receptor
expression increased by WIN55,212-2 in PC12 cells.
However, in our previous work where PC12 cells were
differentiated under the action of neural growth factor
(NGF), AM251 inhibited the neuroprotective effect of
WIN55,212-2 [4]. Hence, the reason for this disparity
seems to be related to the cell differentiation process.
Molderings et al. [15] reported that undifferentiated
PC12 cells do not express detectable amounts
of CB1 receptors. Since the level of activity is
generally related to the number of active receptors,
the antagonism is usually more considerable under
conditions of elevated receptor expression [27].
A few mechanisms have been proposed to explain
the CB1-independent neuromodulatory effect. First,
cannabinoids can alter the membrane fluidity and
other physiochemical properties of the membrane.
Second, cannabinoids directly modulate the functional
properties of voltage- and ligand-gated ion channels
in the membrane [28]. Our experiments showed
that activation of NMDA receptors by a subtoxic
concentration of NMDA (100 µM) in the culture
medium is selectively involved in the protection
of the cells against diazinon, whereas the NMDA
receptor antagonist MK-801 increases diazinon-
mediated neurotoxicity. It seems that MK801 blocks
NMDA receptors and interferes with NMDA-induced
protection. Consistent with these results, other
investigators reported that NMDA (100 µM) protects
cerebellar granular cells from paraoxon-induced
toxicity. This study suggests that NMDA (100 µM)
completely blocks caspase-3 activation responsible for
inducing apoptosis and protects almost all vulnerable
CB1
β-actin
MK801
1
– – – + +
+
+
+
+
+
++–
+
–
+
+
–
–
–
2 3
А
В
С
4 5
WIN55,212-2
DZ
NMDA
0
20
40
60
80
100
120
%
Con
tr.
DZ 2
00
W
IN
+
NM
DA+
DZ
W
IN
+
NM
DA
+
M
K8
01
+
DZ
W
IN
+
M
K8
01
+
N
M
D
A+
D
Z
***
++
+
++
F i g. 7. Assay of CB1 receptor expression in PC12 cells.
Interaction between WIN55,212-2, an NMDA agonist, and an
NMDA antagonist in the effects on the levels of CB1 receptors
in PC12 cells exposed to a sublethal concentration of diazinon
(200 µM). Procedures of analysis are similar to those in Fig. 6;
panels A-C are similar to those in this Figure. Designations in panel
C are similar to those in Figs. 1-6.
Р и с. 7. Експресія рецепторів CB1 у клітинах PC12.
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 6 535
STIMULATION OF CB1 CANNABINOID AND NMDA RECEPTORS
neurons against paraoxon-induced neuronal cell
death [29]. Furthermore, a few researches reported
that NMDA-mediated neuroprotection is provided
by distinct mechanisms. Among them, there are a
calcium-dependent mechanism [30], inhibition of the
pro-apoptotic JNK pathway [31], activation of pro-
survival pathways (MAPK/ERK1/2, PI3-K/Akt, PKA/
CREB, and NFκB) [32], and regulation of transcription
of the antioxidant system [33]. Activation of NMDA
receptors is vitally important for development and
survival of CNS neurons in the developing brain; this
factor enhances differentiation and survival of the
neurons [34].
A controversial situation related to receptor
interactions deserves attention. We tried to reveal
possible interactions between CB1 and NMDA
receptors. Our findings showed for the first time that
NMDA helps WIN55,212-2 to increase cell survival
and to enhance CB1 receptor expression; it should be
taken into account that these two receptor types are
integrated together in PC12 cells. Furthermore, other
studies demonstrated that mGlu1α and CB1 receptors
are co-expressed in a subpopulation of interneurons
in the CA1 stratum radiatum of hippocampal slices
(double immunofluorescence staining and confocal
microscopy were used). It seems that mGlu1α and CB1
receptors expressed on the same CA1 interneurons may
play a cooperative role in the regulation of synaptic
signalling in CA1 pyramidal cells [13]. Other studies
suggested that there are strong direct and indirect
interactions between cannabinoid CB1 receptors and
group II metabotropic glutamate receptors signaling
in layer-V pyramidal neurons in the rat prefrontal
cortex [12].
Therefore, diazinon is a strong toxicant capable of
damaging PC12 cells. Diazinon reduces cell viability
and inhibits expression of CB1 receptors in these
cells. WIN55,212-2 and NMDA noticeably protect
PC12 cells against diazinon toxicity. The protective
effect of WIN55,212-2 seems to be CB1 receptor-
independent (considering the presence of action of
AM251). However, MK801 inhibits the protective
effect of NMDA. As a result, we should conclude that
NMDA exerts its protective action precisely via these
receptors. Finally, it is possible that WIN55,212-2
and NMDA actively interact in mediation of their
protective effects.
The authors, F. Bahrami, M. Hashemi, F. Khalili ,
J. Hashemi, and A. Asgari, confirm that they have no conflict
of interest.
Acknowledgements. We thank Dr. Soheil Sadri for
thoughtful comments on the manuscript. The authors also
thank the grant supplier, the Neurosciences Research Center
(Baqiyatallah University of Medical Sciences).
Ф. Бахрамі1, М. Хашемі1,2, Ф. Халілі3, Дж. Хашемі1,
А. Асгарі2
СТИМУЛЯЦІЯ КАНАБІНОЇДНИХ РЕЦЕПТОРІВ CB1 ТА
NMDA-РЕЦЕПТОРІВ ПОСИЛЮЄ НЕЙРОПРОТЕКТИВНІ
ВПЛИВИ В РАЗІ НЕЙРОТОКСИЧНОСТІ, ІНДУКОВАНОЇ
ДІАЗИНОНОМ
1 Дослідницький центр нейронаук Медичного університету
Баквіятааллах, Тегеран (Іран).
2 Медичний університет Баквіятааллах, Тегеран (Іран).
3 Дослідницький центр молекулярної біології Медичного
університету Баквіятааллах, Тегеран (Іран).
Р е з ю м е
Було показано, що канабіноїди забезпечують нейропротек-
тивний вплив у разі токсичності, індукованої фосфорор-
ганічними сполуками. Ми досліджували впливи агоніста
канабіноїдних рецепторів WIN55.212-2 та агоніста NMDA-
рецепторів на загибель культивованих клітин феохромоци-
томи PC12, зумовлену дією фосфорорганічної сполуки ді-
азинону. Діазинон зменшував життєздатність цих клітин,
і його вплив був дозозалежним. Після експозиції клітин
PC12 до 200 мкM діазинону спостерігалася посилена за-
гибель даних клітин при зменшенні рівня білка рецепто-
рів CB1. Дія на клітини 0.1 мкM WIN55,212-2 та 100 мкM
NMDA, що передувала їх експозиції до діазинону, істот-
но підвищувала рівень виживання клітин та рівень протеї-
ну згаданих рецепторів. Антагоніст канабіноїдів AM251 (1
мкM) не пригнічував нейропротективної дії WIN55,212-2,
що свідчило про незалежність впливу даного агоніста від
дії безпосередньо на канабіноїдні рецептори. Антагоніст
NMDA-рецепторів MK-801 (1 мкM) посилював індуковані
діазиноном нейротоксичні впливи. Це вказувало на те, що
саме NMDA-рецептори, вірогідно, відіграють протективну
роль в аналізованій ситуації.
REFERENCES
1. S. J. Garfitt, K. Jones, H. J. Mason, and J. Cocker, “Exposure
to the organophosphate diazinon: data from a human volunteer
study with oral and dermal doses,” Toxicol. Lett., 134,
Nos. 1/3, 105-113 (2002).
2. H. Mehrani and L. Golmanesh, “Changes in mRNA and protein
levels of nicotinic acetylcholine receptors in Diazoxon-
exposed PC12 cells,” Toxicol. in vitro, 22, No. 5, 1257-1263
(2008).
3. T. L. Lassiter, E. A. MacKillop, I. T. Ryde, et al., “Is
fipronil safer than chlorpyrifos? Comparative developmental
neurotoxicity modeled in PC12 cells,” Brain Res. Bull., 78,
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 6536
F. BAHRAMI, M. HASHEMI, F. KHALILI et al.
No. 6, 313-322 (2009).
4. S. Sadri, F. Bahrami, M. Khazaei, et al., “Cannabinoid receptor
agonist WIN55,212-2 protects differentiated PC12 cells from
organophosphorus-induced apoptosis,” Int. J. Toxicol., 29,
No. 2, 201-208 (2010).
5. J. Flaskos, W. Harris, M. Sachana, et al., “The effects of
diazinon and cypermethrin on the differentiation of neuronal
and glial cell lines,” Toxicol. Appl. Pharmacol., 219, Nos. 2/3,
172-180 (2007).
6. E. Nocerino, M. Amato, and A. A. Izzo, “Cannabis and
cannabinoid receptor,” Fitoterapia, 71, S6-S12 (2000).
7. I. Svízenská, P. Dubový, and A. Sulcová, “Cannabinoid
receptors 1 and 2 (CB1 and CB2), their distribution, ligands
and functional involvement in nervous system structures – a
short review,” Pharmacol. Biochem. Behav., 90, No. 4, 501-
511 (2008).
8. D. Baker, G. Pryce, G. Giovannoni, and A. J. Thompson, “The
therapeutic potential of Cannabis,” Lancet Neurol., 2, No. 5,
291-298 (2003).
9. B. G. Ramírez, C. Blázquez, T. Gómez del Pulgar, et
al., “Prevention of Alzheimer ’s disease pathology by
cannabinoids: neuroprotection mediated by blockade
of microglial activation,” J. Neurosci . , 25 , No. 8,
1904-1913 (2005).
10. M. Hashemi, F. Bahrami, H. Sahraei , et al . , “The
neuroprotective effect of cannabinoid receptor agonist
(WIN55,212-2) in paraoxon induced neurotoxicity in PC12
cells and N-methyl-D-aspartate receptor interaction,” Cell J.,
12, No. 2, 183-190 (2010).
11. C. Sommer, M. Schomacher, C. Berger, et al., “Neuroprotective
cannabinoid receptor antagonist SR141716-A prevents
downregulation of excitotoxic NMDA receptors in the ischemic
penumbra,” Acta Neuropathol., 112, No. 3, 277-286 (2006).
12. J.G. Barbara, N. Auclair, M. P. Roisin, et al., “Direct and
indirect interactions between cannabinoid CB1 receptor and
group ΙΙ metabotropic glutamate receptor signaling in layer
V pyramidal neurons from the rat prefrontal cortex,” Eur. J.
Neurosci., 17, No. 5, 981-990 (2003).
13. F. Boscia, F. Ferraguti, F. Moroni, et al., “mGlu1α receptors are
co-expressed with CB1 receptors in a subset of interneurons
in the CA1 region of organotypic hippocampal slice cultures
and adult rat brain,” Neuropharmacology, 55, No. 4, 428-439
(2008).
14. K. P. Sarker, and I. Maruyama, “Anandamide induces cell
death independently of cannabinoid receptors or vanilloid
receptor 1: possible involvement of lipid rafts,” Cell. Mol. Life
Sci., 60, No. 6, 1200-1208 (2003).
15. G. J. Molderings, H. Bönisch, R. Hammermann, et al.,
“Noradrenaline release-inhibiting receptors on PC12 cells
devoid of α2 and CB1 receptors: similarities to presynaptic
imidazoline and EDG receptors,” Neurochem. Int., 40, No. 2,
157-167 (2002).
16. M. Casado, A. López-Guajardo, B. Mellström, et al.,
“Functional N-methyl-D-aspartate receptors in clonal rat
pheochromocytoma cells,” J. Physiol., 490, No. 2, 391-404
(1996).
17. M. M. Bradford, “A rapid and sensitive method for quantitation
of microgram quantities of protein utilizing the principle of
protein-dye binding,” Anal. Biochem., 72, 248-254 (1976).
18. F. Bahrami, M. Yousefpour, H. Mehrani, et al., “Type of
cell death and the role of acetylcholinesterase activity in
neurotoxicity induced by paraoxon in cultured rat hippocampal
neurons,” Acta Biol. Hung., 60, No. 1, 1-13 (2009).
19. T. A. Slotkin and F. J. Seidler, “Developmental neurotoxicants
target differentiat ion into the serotonin phenotype:
chlorpyrifos, diazinon, dieldrin and divalent nickel,” Toxicol.
Appl. Pharmacol., 233, No. 2, 211-219 (2008).
20. J. Chen, C. Lee, S. Errico, et al., “Protective effects of Δ9-
tetrahydrocannabinol against N-methyl-D-aspartate-induced
AF5 cell death,” Mol. Brain Res., 134, No. 2, 215-225 (2005).
21. T. Iuvone, G. Esposito, R. Esposito, et al., “Neuroprotective
effect of cannabidiol, a non-psychoactive component from
Cannabis sativa, on β-amyloid-induced toxicity in PC12
cells,” J. Neurochem., 89, No. 1, 134-141 (2004).
22. D. Fernández-López, J. Martínez-Orgado, E. Nuñez, et
al., “Characterization of the neuroprotective effect of the
cannabinoid agonist WIN55,212-2 in an in vitro model of
hypoxic-ischemic brain damage in newborn rats,” Pediat. Res.,
60, No. 2, 169-173 (2006).
23. B. S. Harvey, K. S. Ohlsson, J. L. Mååg, et al., “Contrasting
protective effects of cannabinoids against oxidative stress and
amyloid-b evoked neurotoxicity in vitro,” Neurotoxicology, 33,
No. 1, 138-146 (2012).
24. T. Gomes del Pulgar, G. Velasco, and M. Guzmán, “The CB1
cannabinoid receptor is coupled to the activation of protein
kinaseB/Akt,” Biochem. J., 347, No. 2, 369-373 (2000).
25. M. Guzmán, C. Sánchez, and I. Galve-Roperh, “Cannabi-
noids and cell fate,” Pharmacol. Ther., 95, No. 2, 175-184
(2002).
26. M. Widmer, C. O. Hanemann, and J. Zajicek, “High
concentrations of cannabinoids activate apoptosis in
human U373MG glioma cells,” J. Neurosci. Res., 86, No. 14,
3212-3220 (2008).
27. V. See, A. L. Boutillier, H. Bito, and J. P. Loeffler,
“Calcium/calmodulin dependent protein kinase type
IV (CaMKIV) inhibits apoptosis induced by potassium
deprivat ion in cerebellar granule neurons,” FASEB
J., 15, No. 1, 134-144 (2001).
28. X. Xifro, A. Falluel-Morel, A. Minano, et al., “N-methyl-D-
aspartate blocks activation of JNK and mitochondrial apoptotic
pathway induced by potassium deprivation in cerebellar
granule cells,” J. Biol. Chem., 281, No. 10, 6801-6812 (2006).
29. D. Jantas and W. D. Lason, “Different mechanisms of
NMDA mediated protection against neuronal apoptosis:
a s t imuli-dependent effect ,” Neurochem. Res . , 34 ,
No. 11, 2040-2054 (2009).
30. J. Singh and G. Kaur, “Neuroprotection mediated by subtoxic
dose of NMDA in SH-SY5Y neuroblastoma cultures: activity
dependent regulation of PSA-NCAM expression,” Brain Res.
Mol., 137, Nos. 1/2, 223-234 (2005).
31. C. C. Wang, R. G. Held, S. C. Chang, et al. , “A
critical role for GluN2B-containing NMDA receptors in
cortical development and function,” Neuron , 72 , No. 5,
789-805 (2011).
|