Stress State Evaluation by an Improved Support Vector Machine

Effective methods of evaluation of the psychological pressure can detect and assess realtime stress states, warning people to pay necessary attention to their health. This study is focused on the stress assessment issue using an improved support vector machine (SVM) algorithm on the base of surfac...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Xin, L., Zetao, Ch., Yunpeng, Zh., Jiali, X., Shuicai, W., Yanjun, Z.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізіології ім. О.О. Богомольця НАН України 2016
Назва видання:Нейрофизиология
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/148339
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Stress State Evaluation by an Improved Support Vector Machine / L. Xin, Ch. Zetao, Zh. Yunpeng, X. Jiali, W. Shuicai, Z. Yanjun // Нейрофизиология. — 2016. — Т. 48, № 2. — С. 96-102. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Effective methods of evaluation of the psychological pressure can detect and assess realtime stress states, warning people to pay necessary attention to their health. This study is focused on the stress assessment issue using an improved support vector machine (SVM) algorithm on the base of surface electromyographic signals. After the samples were clustered, the cluster results were given to the loss function of the SVM to screen training samples. With the imbalance amongst the training samples after screening, a weight was given to the loss function to reduce the prediction tendentiousness of the classifier and, therefore, to decrease the error of the training sample and make up for the influence of the unbalanced samples. This improved the algorithm, increased the classification accuracy from 73.79% to 81.38%, and reduced the running time from 1973.1 to 540.2 sec. Experimental results show that this algorithm can help to effectively avoid the influence of individual differences on a stress appraisal effect and to reduce the computational complexity during the training phase of the classifier