Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds
We present the proof of the HRR theorem for a generic complex compact manifold by evaluating the functional integral for the Witten index of the appropriate supersymmetric quantum mechanical system.
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2012 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2012
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/148356 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds / A.V. Smilga // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 17 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148356 |
|---|---|
| record_format |
dspace |
| spelling |
Smilga, A.V. 2019-02-18T10:52:37Z 2019-02-18T10:52:37Z 2012 Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds / A.V. Smilga // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 17 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C55; 53C80 DOI: http://dx.doi.org/10.3842/SIGMA.2012.003 https://nasplib.isofts.kiev.ua/handle/123456789/148356 We present the proof of the HRR theorem for a generic complex compact manifold by evaluating the functional integral for the Witten index of the appropriate supersymmetric quantum mechanical system. I am indebted to G. Carron, E. Ivanov, L. Positselsky, S. Theisen, A. Wipf and, especially, M. Verbitsky for illuminating discussions and remarks. Special thanks are due to Alexei Rosly for carefully reading the manuscript and many valuable remarks. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds |
| spellingShingle |
Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds Smilga, A.V. |
| title_short |
Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds |
| title_full |
Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds |
| title_fullStr |
Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds |
| title_full_unstemmed |
Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds |
| title_sort |
supersymmetric proof of the hirzebruch-riemann-roch theorem for non-kähler manifolds |
| author |
Smilga, A.V. |
| author_facet |
Smilga, A.V. |
| publishDate |
2012 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We present the proof of the HRR theorem for a generic complex compact manifold by evaluating the functional integral for the Witten index of the appropriate supersymmetric quantum mechanical system.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148356 |
| citation_txt |
Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds / A.V. Smilga // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 17 назв. — англ. |
| work_keys_str_mv |
AT smilgaav supersymmetricproofofthehirzebruchriemannrochtheoremfornonkahlermanifolds |
| first_indexed |
2025-12-07T20:07:08Z |
| last_indexed |
2025-12-07T20:07:08Z |
| _version_ |
1850881373834838016 |