Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds

We present the proof of the HRR theorem for a generic complex compact manifold by evaluating the functional integral for the Witten index of the appropriate supersymmetric quantum mechanical system.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2012
1. Verfasser: Smilga, A.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2012
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148356
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds / A.V. Smilga // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148356
record_format dspace
spelling Smilga, A.V.
2019-02-18T10:52:37Z
2019-02-18T10:52:37Z
2012
Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds / A.V. Smilga // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 17 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53C55; 53C80
DOI: http://dx.doi.org/10.3842/SIGMA.2012.003
https://nasplib.isofts.kiev.ua/handle/123456789/148356
We present the proof of the HRR theorem for a generic complex compact manifold by evaluating the functional integral for the Witten index of the appropriate supersymmetric quantum mechanical system.
I am indebted to G. Carron, E. Ivanov, L. Positselsky, S. Theisen, A. Wipf and, especially, M. Verbitsky for illuminating discussions and remarks. Special thanks are due to Alexei Rosly for carefully reading the manuscript and many valuable remarks.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds
spellingShingle Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds
Smilga, A.V.
title_short Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds
title_full Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds
title_fullStr Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds
title_full_unstemmed Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds
title_sort supersymmetric proof of the hirzebruch-riemann-roch theorem for non-kähler manifolds
author Smilga, A.V.
author_facet Smilga, A.V.
publishDate 2012
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We present the proof of the HRR theorem for a generic complex compact manifold by evaluating the functional integral for the Witten index of the appropriate supersymmetric quantum mechanical system.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148356
citation_txt Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds / A.V. Smilga // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT smilgaav supersymmetricproofofthehirzebruchriemannrochtheoremfornonkahlermanifolds
first_indexed 2025-12-07T20:07:08Z
last_indexed 2025-12-07T20:07:08Z
_version_ 1850881373834838016