On Lie Algebroids and Poisson Algebras

We introduce and study a class of Lie algebroids associated to faithful modules which is motivated by the notion of cotangent Lie algebroids of Poisson manifolds. We also give a classification of transitive Lie algebroids and describe Poisson algebras by using the notions of algebroid and Lie connec...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2012
Автори: García-Beltrán, D., Vallejo, J.A., Vorobjev, Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/148369
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Lie Algebroids and Poisson Algebras / D. García-Beltrán, J.A. Vallejo, Y. Vorobjev // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148369
record_format dspace
spelling García-Beltrán, D.
Vallejo, J.A.
Vorobjev, Y.
2019-02-18T11:06:43Z
2019-02-18T11:06:43Z
2012
On Lie Algebroids and Poisson Algebras / D. García-Beltrán, J.A. Vallejo, Y. Vorobjev // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 24 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53D17; 17B63
DOI: http://dx.doi.org/10.3842/SIGMA.2012.006
https://nasplib.isofts.kiev.ua/handle/123456789/148369
We introduce and study a class of Lie algebroids associated to faithful modules which is motivated by the notion of cotangent Lie algebroids of Poisson manifolds. We also give a classification of transitive Lie algebroids and describe Poisson algebras by using the notions of algebroid and Lie connections.
JAV and DGB express their gratitude to the members of the Department of Mathematics of the University of Sonora (where part of this work was done), particularly to R. Flores-Espinoza and G. D´avila-Rasc´on, for their warm hospitality. JAV also thanks the National Council of Science and Technology in Mexico (CONACyT), for the research grant JB2-CB-78791.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
On Lie Algebroids and Poisson Algebras
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On Lie Algebroids and Poisson Algebras
spellingShingle On Lie Algebroids and Poisson Algebras
García-Beltrán, D.
Vallejo, J.A.
Vorobjev, Y.
title_short On Lie Algebroids and Poisson Algebras
title_full On Lie Algebroids and Poisson Algebras
title_fullStr On Lie Algebroids and Poisson Algebras
title_full_unstemmed On Lie Algebroids and Poisson Algebras
title_sort on lie algebroids and poisson algebras
author García-Beltrán, D.
Vallejo, J.A.
Vorobjev, Y.
author_facet García-Beltrán, D.
Vallejo, J.A.
Vorobjev, Y.
publishDate 2012
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We introduce and study a class of Lie algebroids associated to faithful modules which is motivated by the notion of cotangent Lie algebroids of Poisson manifolds. We also give a classification of transitive Lie algebroids and describe Poisson algebras by using the notions of algebroid and Lie connections.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148369
citation_txt On Lie Algebroids and Poisson Algebras / D. García-Beltrán, J.A. Vallejo, Y. Vorobjev // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 24 назв. — англ.
work_keys_str_mv AT garciabeltrand onliealgebroidsandpoissonalgebras
AT vallejoja onliealgebroidsandpoissonalgebras
AT vorobjevy onliealgebroidsandpoissonalgebras
first_indexed 2025-12-07T19:05:36Z
last_indexed 2025-12-07T19:05:36Z
_version_ 1850877502127341568