New Variables of Separation for the Steklov-Lyapunov System

A rigid body in an ideal fluid is an important example of Hamiltonian systems on a dual to the semidirect product Lie algebra e(3)=so(3)⋉R³. We present the bi-Hamiltonian structure and the corresponding variables of separation on this phase space for the Steklov-Lyapunov system and it's gyrosta...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2012
Main Author: Tsiganov, A.V.
Format: Article
Language:English
Published: Інститут математики НАН України 2012
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/148386
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:New Variables of Separation for the Steklov-Lyapunov System / A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 27 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148386
record_format dspace
spelling Tsiganov, A.V.
2019-02-18T11:19:48Z
2019-02-18T11:19:48Z
2012
New Variables of Separation for the Steklov-Lyapunov System / A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 27 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 70H20; 70H06; 37K10
DOI: http://dx.doi.org/10.3842/SIGMA.2012.012
https://nasplib.isofts.kiev.ua/handle/123456789/148386
A rigid body in an ideal fluid is an important example of Hamiltonian systems on a dual to the semidirect product Lie algebra e(3)=so(3)⋉R³. We present the bi-Hamiltonian structure and the corresponding variables of separation on this phase space for the Steklov-Lyapunov system and it's gyrostatic deformation.
The author is grateful to the referees for a number of helpful suggestions that resulted in improvement of the article.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
New Variables of Separation for the Steklov-Lyapunov System
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title New Variables of Separation for the Steklov-Lyapunov System
spellingShingle New Variables of Separation for the Steklov-Lyapunov System
Tsiganov, A.V.
title_short New Variables of Separation for the Steklov-Lyapunov System
title_full New Variables of Separation for the Steklov-Lyapunov System
title_fullStr New Variables of Separation for the Steklov-Lyapunov System
title_full_unstemmed New Variables of Separation for the Steklov-Lyapunov System
title_sort new variables of separation for the steklov-lyapunov system
author Tsiganov, A.V.
author_facet Tsiganov, A.V.
publishDate 2012
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description A rigid body in an ideal fluid is an important example of Hamiltonian systems on a dual to the semidirect product Lie algebra e(3)=so(3)⋉R³. We present the bi-Hamiltonian structure and the corresponding variables of separation on this phase space for the Steklov-Lyapunov system and it's gyrostatic deformation.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148386
citation_txt New Variables of Separation for the Steklov-Lyapunov System / A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 27 назв. — англ.
work_keys_str_mv AT tsiganovav newvariablesofseparationforthesteklovlyapunovsystem
first_indexed 2025-12-07T15:34:03Z
last_indexed 2025-12-07T15:34:03Z
_version_ 1850864192868843520