New Variables of Separation for the Steklov-Lyapunov System
A rigid body in an ideal fluid is an important example of Hamiltonian systems on a dual to the semidirect product Lie algebra e(3)=so(3)⋉R³. We present the bi-Hamiltonian structure and the corresponding variables of separation on this phase space for the Steklov-Lyapunov system and it's gyrosta...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2012 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2012
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/148386 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | New Variables of Separation for the Steklov-Lyapunov System / A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 27 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148386 |
|---|---|
| record_format |
dspace |
| spelling |
Tsiganov, A.V. 2019-02-18T11:19:48Z 2019-02-18T11:19:48Z 2012 New Variables of Separation for the Steklov-Lyapunov System / A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 27 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 70H20; 70H06; 37K10 DOI: http://dx.doi.org/10.3842/SIGMA.2012.012 https://nasplib.isofts.kiev.ua/handle/123456789/148386 A rigid body in an ideal fluid is an important example of Hamiltonian systems on a dual to the semidirect product Lie algebra e(3)=so(3)⋉R³. We present the bi-Hamiltonian structure and the corresponding variables of separation on this phase space for the Steklov-Lyapunov system and it's gyrostatic deformation. The author is grateful to the referees for a number of helpful suggestions that resulted in improvement of the article. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications New Variables of Separation for the Steklov-Lyapunov System Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
New Variables of Separation for the Steklov-Lyapunov System |
| spellingShingle |
New Variables of Separation for the Steklov-Lyapunov System Tsiganov, A.V. |
| title_short |
New Variables of Separation for the Steklov-Lyapunov System |
| title_full |
New Variables of Separation for the Steklov-Lyapunov System |
| title_fullStr |
New Variables of Separation for the Steklov-Lyapunov System |
| title_full_unstemmed |
New Variables of Separation for the Steklov-Lyapunov System |
| title_sort |
new variables of separation for the steklov-lyapunov system |
| author |
Tsiganov, A.V. |
| author_facet |
Tsiganov, A.V. |
| publishDate |
2012 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
A rigid body in an ideal fluid is an important example of Hamiltonian systems on a dual to the semidirect product Lie algebra e(3)=so(3)⋉R³. We present the bi-Hamiltonian structure and the corresponding variables of separation on this phase space for the Steklov-Lyapunov system and it's gyrostatic deformation.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148386 |
| citation_txt |
New Variables of Separation for the Steklov-Lyapunov System / A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 27 назв. — англ. |
| work_keys_str_mv |
AT tsiganovav newvariablesofseparationforthesteklovlyapunovsystem |
| first_indexed |
2025-12-07T15:34:03Z |
| last_indexed |
2025-12-07T15:34:03Z |
| _version_ |
1850864192868843520 |