A Two-Component Generalization of the Integrable rdDym Equation

We find a two-component generalization of the integrable case of rdDym equation. The reductions of this system include the general rdDym equation, the Boyer-Finley equation, and the deformed Boyer-Finley equation. Also we find a Bäcklund transformation between our generalization and Bodganov's...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2012
Main Author: Morozov, O.I.
Format: Article
Language:English
Published: Інститут математики НАН України 2012
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/148387
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A Two-Component Generalization of the Integrable rdDym Equation / O.I. Morozov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 26 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148387
record_format dspace
spelling Morozov, O.I.
2019-02-18T11:20:58Z
2019-02-18T11:20:58Z
2012
A Two-Component Generalization of the Integrable rdDym Equation / O.I. Morozov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 26 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 35A30; 58H05; 58J70
DOI: http://dx.doi.org/10.3842/SIGMA.2012.051
https://nasplib.isofts.kiev.ua/handle/123456789/148387
We find a two-component generalization of the integrable case of rdDym equation. The reductions of this system include the general rdDym equation, the Boyer-Finley equation, and the deformed Boyer-Finley equation. Also we find a Bäcklund transformation between our generalization and Bodganov's two-component generalization of the universal hierarchy equation.
This paper is a contribution to the Special Issue “Geometrical Methods in Mathematical Physics”. The full collection is available at http://www.emis.de/journals/SIGMA/GMMP2012.html. I am very grateful to M.V. Pavlov and A.G. Sergyeyev for the valuable discussions. Also I’d like to thank M. Marvan and A.G. Sergyeyev for the warm hospitality in Mathematical Institute, Silezian University at Opava, Czech Republic, where this work was initiated and partially supported by the ESF project CZ.1.07/2.3.00/20.0002.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
A Two-Component Generalization of the Integrable rdDym Equation
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A Two-Component Generalization of the Integrable rdDym Equation
spellingShingle A Two-Component Generalization of the Integrable rdDym Equation
Morozov, O.I.
title_short A Two-Component Generalization of the Integrable rdDym Equation
title_full A Two-Component Generalization of the Integrable rdDym Equation
title_fullStr A Two-Component Generalization of the Integrable rdDym Equation
title_full_unstemmed A Two-Component Generalization of the Integrable rdDym Equation
title_sort two-component generalization of the integrable rddym equation
author Morozov, O.I.
author_facet Morozov, O.I.
publishDate 2012
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We find a two-component generalization of the integrable case of rdDym equation. The reductions of this system include the general rdDym equation, the Boyer-Finley equation, and the deformed Boyer-Finley equation. Also we find a Bäcklund transformation between our generalization and Bodganov's two-component generalization of the universal hierarchy equation.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148387
citation_txt A Two-Component Generalization of the Integrable rdDym Equation / O.I. Morozov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 26 назв. — англ.
work_keys_str_mv AT morozovoi atwocomponentgeneralizationoftheintegrablerddymequation
AT morozovoi twocomponentgeneralizationoftheintegrablerddymequation
first_indexed 2025-12-01T15:27:25Z
last_indexed 2025-12-01T15:27:25Z
_version_ 1850860594885820416