Bring's Curve: its Period Matrix and the Vector of Riemann Constants
Bring's curve is the genus 4 Riemann surface with automorphism group of maximal size, S₅. Riera and Rodríguez have provided the most detailed study of the curve thus far via a hyperbolic model. We will recover and extend their results via an algebraic model based on a sextic curve given by both...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2012 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2012
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/148391 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Bring's Curve: its Period Matrix and the Vector of Riemann Constants / H.W. Braden, T.P. Northover // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Bring's curve is the genus 4 Riemann surface with automorphism group of maximal size, S₅. Riera and Rodríguez have provided the most detailed study of the curve thus far via a hyperbolic model. We will recover and extend their results via an algebraic model based on a sextic curve given by both Hulek and Craig and implicit in work of Ramanujan. In particular we recover their period matrix; further, the vector of Riemann constants will be identified.
|
|---|---|
| ISSN: | 1815-0659 |