Bring's Curve: its Period Matrix and the Vector of Riemann Constants
Bring's curve is the genus 4 Riemann surface with automorphism group of maximal size, S₅. Riera and Rodríguez have provided the most detailed study of the curve thus far via a hyperbolic model. We will recover and extend their results via an algebraic model based on a sextic curve given by both...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2012 |
| Hauptverfasser: | Braden, H.W., Northover, T.P. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2012
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/148391 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Bring's Curve: its Period Matrix and the Vector of Riemann Constants / H.W. Braden, T.P. Northover // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
On the Cauchy-Riemann Geometry of Transversal Curves in the 3-Sphere
von: E. Musso, et al.
Veröffentlicht: (2020) -
On the Cauchy - Riemann Geometry of
Transversal Curves in the 3-Sphere
von: Musso, Emilio, et al.
Veröffentlicht: (2020) -
Modification of Peterson-Gorenstein-Zierler method, bringing the matrix to triangular form
von: F. G. Fejziev, et al.
Veröffentlicht: (2018) -
Modification of Peterson-Gorenstein-Zierler method, bringing the matrix to triangular form (binary case)
von: F. G. Fejziev, et al.
Veröffentlicht: (2016) -
Properties of Matrix Orthogonal Polynomials via their Riemann-Hilbert Characterization
von: Grünbaum, F.A., et al.
Veröffentlicht: (2011)