Discrete Integrable Equations over Finite Fields

Discrete integrable equations over finite fields are investigated. The indeterminacy of the equation is resolved by treating it over a field of rational functions instead of the finite field itself. The main discussion concerns a generalized discrete KdV equation related to a Yang-Baxter map. Explic...

Full description

Saved in:
Bibliographic Details
Date:2012
Main Authors: Kanki, M., Mada, J., Tokihiro, T.
Format: Article
Language:English
Published: Інститут математики НАН України 2012
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/148406
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Discrete Integrable Equations over Finite Fields / M. Kanki, J. Mada, T. Tokihiro // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148406
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1484062025-02-23T20:25:15Z Discrete Integrable Equations over Finite Fields Kanki, M. Mada, J. Tokihiro, T. Discrete integrable equations over finite fields are investigated. The indeterminacy of the equation is resolved by treating it over a field of rational functions instead of the finite field itself. The main discussion concerns a generalized discrete KdV equation related to a Yang-Baxter map. Explicit forms of soliton solutions and their periods over finite fields are obtained. Relation to the singularity confinement method is also discussed. The authors wish to thank Professors K.M. Tamizhmani, R. Willox and Dr. S. Iwao for useful comments. This work is partially supported by Grant-in-Aid for JSPS Fellows (24-1379). 2012 Article Discrete Integrable Equations over Finite Fields / M. Kanki, J. Mada, T. Tokihiro // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 17 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35Q53; 37K40; 37P25 DOI: http://dx.doi.org/10.3842/SIGMA.2012.054 https://nasplib.isofts.kiev.ua/handle/123456789/148406 en Symmetry, Integrability and Geometry: Methods and Applications application/pdf Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Discrete integrable equations over finite fields are investigated. The indeterminacy of the equation is resolved by treating it over a field of rational functions instead of the finite field itself. The main discussion concerns a generalized discrete KdV equation related to a Yang-Baxter map. Explicit forms of soliton solutions and their periods over finite fields are obtained. Relation to the singularity confinement method is also discussed.
format Article
author Kanki, M.
Mada, J.
Tokihiro, T.
spellingShingle Kanki, M.
Mada, J.
Tokihiro, T.
Discrete Integrable Equations over Finite Fields
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Kanki, M.
Mada, J.
Tokihiro, T.
author_sort Kanki, M.
title Discrete Integrable Equations over Finite Fields
title_short Discrete Integrable Equations over Finite Fields
title_full Discrete Integrable Equations over Finite Fields
title_fullStr Discrete Integrable Equations over Finite Fields
title_full_unstemmed Discrete Integrable Equations over Finite Fields
title_sort discrete integrable equations over finite fields
publisher Інститут математики НАН України
publishDate 2012
url https://nasplib.isofts.kiev.ua/handle/123456789/148406
citation_txt Discrete Integrable Equations over Finite Fields / M. Kanki, J. Mada, T. Tokihiro // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 17 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT kankim discreteintegrableequationsoverfinitefields
AT madaj discreteintegrableequationsoverfinitefields
AT tokihirot discreteintegrableequationsoverfinitefields
first_indexed 2025-11-25T04:41:13Z
last_indexed 2025-11-25T04:41:13Z
_version_ 1849735958132424704
fulltext Symmetry, Integrability and Geometry: Methods and Applications SIGMA 8 (2012), 054, 12 pages Discrete Integrable Equations over Finite Fields Masataka KANKI †, Jun MADA ‡ and Tetsuji TOKIHIRO † † Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Tokyo 153-8914, Japan E-mail: kanki@ms.u-tokyo.ac.jp, toki@ms.u-tokyo.ac.jp ‡ College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba 275-8576, Japan E-mail: mada.jun@nihon-u.ac.jp Received May 18, 2012, in final form August 15, 2012; Published online August 18, 2012 http://dx.doi.org/10.3842/SIGMA.2012.054 Abstract. Discrete integrable equations over finite fields are investigated. The indeter- minacy of the equation is resolved by treating it over a field of rational functions instead of the finite field itself. The main discussion concerns a generalized discrete KdV equation related to a Yang–Baxter map. Explicit forms of soliton solutions and their periods over finite fields are obtained. Relation to the singularity confinement method is also discussed. Key words: integrable system; discrete KdV equation; finite field; cellular automaton 2010 Mathematics Subject Classification: 35Q53; 37K40; 37P25 1 Introduction Cellular automata are discrete dynamical systems which provide simple and efficient tools for modeling complex phenomena [17]. Since each cell of a cellular automaton takes only a finite number of states, it seems natural to describe its time evolution by utilising a finite field. In particular, if we can construct finite field analogues of dynamical equations whose mathema- tical structures are well studied, such as integrable systems, this construction may give some fundamental methods for analysing models of cellular automata. Discrete analogues of integrable equations have been widely investigated, however, their extension over a finite field has less been examined. One of the reasons for this may be that the time evolution of a nonlinear system is not always well defined over a finite field. For example, let us consider the discrete KdV equation 1 xt+1 n+1 − 1 xtn + δ 1 + δ ( xt+1 n − xtn+1 ) = 0, (1.1) over a finite field Fq where q = pm, p is a prime number and m ∈ Z+. Here n, t ∈ Z and δ is a parameter. If we put 1 ytn := (1 + δ) 1 xt+1 n − δxtn we obtain equivalent coupled equations xt+1 n = (1 + δ)ytn 1 + δxtny t n , ytn+1 = (1 + δxtny t n)xtn 1 + δ . (1.2) Clearly (1.2) does not determine the time evolution when 1 + δxtny t n ≡ 0. Over a field of characteristic 0 such as C, the time evolution of (xtn, y t n) will not hit this exceptional line for mailto:kanki@ms.u-tokyo.ac.jp mailto:toki@ms.u-tokyo.ac.jp mailto:mada.jun@nihon-u.ac.jp http://dx.doi.org/10.3842/SIGMA.2012.054 2 M. Kanki, J. Mada and T. Tokihiro generic initial conditions, but on the contrary, the evolution comes to this exceptional line in many cases over a finite field as a division by 0 appears. A pioneering work on integrable equations over finite fields is that by Doliwa, Bia lecki and Klimczewski [1, 4]. They used an algebro-geometric approach to construct soliton solutions to discrete integrable equations over finite fields in Hirota’s bilinear form. For the discrete KdV equation, the bilinear form is written as (1 + δ)σt+1 n+1σ t−1 n = δσt−1n+1σ t−1 n + σtnσ t n+1. (1.3) The N -soliton solution to the equation (1.3) is given as σtn = det 1≤i,j≤N ( δij + γi li + lj − 1 ( 1− li li )t( li + δ 1 + δ − li )n) (1.4) where γi, li (i = 1, 2, . . . , N) are arbitrary parameters satisfying li 6= lj for i 6= j. Hence if we choose li 6≡ 0, 1 + δ (i = 1, 2, . . . , N) and li + lj 6≡ 1 (1 ≤ i, j ≤ N), the N soliton solution (1.4) is well defined for all (n, t) ∈ Z2 and gives a time evolution pattern over a finite field. A similar approach was also used for discrete KP equation in the bilinear form [2]. However, since the nonlinear form of the discrete KdV equation (1.1) is obtained from (1.3) by putting xtn := σt nσ t−1 n+1 σt n+1σ t−1 n , well defined N -soliton solutions xtn of (1.1) or (1.2) cannot be obtained from (1.4) because xtn is not defined if σtn+1 ≡ 0 or σt−1n ≡ 0. Indeterminacy of the time evolution for a generic initial state cannot be avoided either when we use Hirota’s bilinear form. Note that if we consider the equation over PFq := Fq ∪ {∞} instead of Fq by adding a value ∞, we frequently hit the indeterminate values 0 0 ,∞+0, 0 ·∞ and so on, which causes further problems. In this article, we propose a prescription to determine the time evolution of a nonlinear system over finite fields by taking as examples the discrete KdV equation (1.1) and its generalization. We show in Section 2 that the initial value problem is well defined and we investigate N -soliton solutions in Section 3. The last section is devoted to discussing the relation of our method to the singularity confinement method [5]. 2 A generalized discrete KdV equation over a function field 2.1 Discrete KdV equation First we explain how the indeterminate values appear through the time evolution by examining the discrete KdV equation (1.2) over F7 := {0, 1, 2, 3, 4, 5, 6}. If we take δ = 1, (1.2) turns into xt+1 n = 2ytn 1 + xtny t n , ytn+1 = (1 + xtny t n)xtn 2 . Suppose that x01 = 6, x02 = 5, y01 = 2, y11 = 2, then we have x11 = 4 13 ≡ 3, y02 = 78 2 ≡ 4 mod 7. With further calculation we have x21 = 4 7 ≡ 4 0 , y12 = 21 2 ≡ 0, x12 = 8 21 ≡ 1 0 . Since 4 0 and 1 0 are not defined over F7, we now extend F7 to PF7 and take j 0 ≡ ∞ for j ∈ {1, 2, 3, 4, 5, 6}. However, at the next time step, we have x22 = 2 · 0 1 +∞ · 0 , y13 = (1 +∞ · 0) · ∞ 2 and reach a deadlock. Discrete Integrable Equations over Finite Fields 3 Figure 1. An example of the time evolution of the coupled discrete KdV equation (1.2) over PF7 where δ = 1. , 0 1 2 3 4 5 6 Figure 2. The time evolution pattern of xtn (left) and ytn (right) of (1.2) over PF7 where δ = 1. Elements of PF7 are represented on the following grayscale: from 0 (white) to 6 (gray) and ∞ (black). See the scale bar in the figure. Therefore we try the following two procedures: [I] we keep δ as a parameter for the same initial condition, and obtain as a system over F7(δ), x11 = 2(1 + δ) 1 + 5δ , y02 = 6(1 + 5δ) 1 + δ , x12 = 6(1 + δ)(1 + 5δ) 1 + 3δ + 3δ2 , y12 = 2(1 + 2δ + 4δ2) (1 + 5δ)2 , x21 = 2(1 + δ)(1 + 5δ) 1 + 2δ + 4δ2 , x22 = 4(1 + δ)(2 + δ)(3 + 2δ) (1 + 5δ)(5 + 5δ + 2δ2) , y13 = 2(5 + 5δ + 2δ2) (2 + δ)2 . [II] Then we put δ = 1 to have a system over PF7 as x11 = 3, y02 = 4, x12 = 72 7 ≡ ∞, y12 = 14 36 ≡ 0, x21 = 24 7 ≡ ∞, x22 = 120 72 ≡ 4, y13 = 24 9 ≡ 5. Thus all the values are uniquely determined over PF7. Figs. 1 and 2 show a time evolution pattern of the discrete KdV equation (1.2) over PF7 for the initial conditions x01 = 6, x02 = 5, x03 = 4, x04 = 3, x0j = 2 (j ≥ 5) and yt1 = 2 (t ≥ 0). This example suggests that the equation (1.2) should be understood as evolving over the field Fq(δ), the rational function field with indeterminate δ over Fq. To obtain the time evolution pattern over PFq, we have to substitute δ with a suitable value δ0 ∈ Fq (δ0 = 1 in the example 4 M. Kanki, J. Mada and T. Tokihiro above). This substitution can be expressed as the following reduction map: Fq(δ)× → PFq : (δ − δ0)s g(δ − δ0) f(δ − δ0) 7→  0, s > 0, ∞, s < 0, g(0) f(0) , s = 0, where s ∈ Z, f(h), g(h) ∈ Fq[h] are co-prime polynomials and f(0) 6= 0, g(0) 6= 0. With this prescription, we know that 0/0 does not appear and we can uniquely determine the time evolution for generic initial conditions defined over Fq. 2.2 Generalized discrete KdV equation In this subsection we explain how to apply our method to a dynamical system with more than one parameters by taking a generalized form of the discrete KdV equation as an example. In this case, we have to be careful in substituting the values to the parameters. The generalised discrete KdV equation is the following discrete integrable system: xt+1 n = { (1− β) + βxtny t n } ytn (1− α) + αxtny t n , ytn+1 = { (1− α) + αxtny t n } xtn (1− β) + βxtny t n , (2.1) with arbitrary parameters α and β. To avoid indeterminacy, we regard (2.1) as a dynamical system over Fq(α, β). Then, as in the case of (1.2), its time evolution is uniquely determined for generic initial and boundary conditions. Note that when we substitute values in Fq for the parameters, the result can be indeterminate, i.e., 0 0 , or it can depend on the order of the substi- tutions. These problems are typical of a field of rational functions with two or more parameters. Even if the numerator and the denominator of a rational function are both irreducible polyno- mials without common factors, there will be points of indeterminacy, since the numerator and the denominator intersect in co-dimension two or more in the space of parameters. For example, let q = 5 and suppose that xtn = ytn = 2 ∈ F5 then xt+1 n = 2 + β 1 + 3α ∈ F5(α, β). If we put α = β = 3 ∈ F5, then, we find that xt+1 n = 0 0 , or, if we first substitute β, then xt+1 n = 0 1 + 3α ≡ 0, which is unrelated to subsequent substitutions of α. One remedy is to regard these parameters themselves as depending on a common parameter. For example, if we put α = 3 + ε and β = 3 + ε, xt+1 n = 2 + (3 + ε) 1 + 3(3 + ε) ≡ ε 3ε = 1 3 ≡ 2, and the value is uniquely determined in PF5. We show an example of a time evolution pattern of (2.1) thus determined in Fig. 3. The preceding arguments suggest a general trick to construct an equation, or a time evolution rule, over a finite field from a given discrete equation. Discrete Integrable Equations over Finite Fields 5 Figure 3. The time evolution pattern of xtn of the generalised discrete KdV equation (2.1) over PF7 where α = 2, β = 3. Elements of PF7 are represented on the following grayscale: from 0 (white) to 6 (gray) and ∞ (black). 1. Introduce one parameter, say ε, in the equation (or the initial condition), and obtain a solution over Fq(ε). 2. Substitute a value in Fq for the parameter in the solution, and obtain a pattern over PFq. This construction can be applied to both ordinary and partial difference equations regardless of their integrability. If we have explicit form of a solution with this parameter, we immediately obtain a pattern over a finite field by replacing the parameter with a value in the field. In the next section, we show some example of soliton solutions of (1.2) and (2.1) over finite fields. 3 Soliton solutions over finite fields First we consider the N -soliton solutions to (1.1) over Fq. As mentioned in the introduction, the N -soliton solution is given as xtn = σtnσ t−1 n+1 σtn+1σ t−1 n , σtn := det 1≤i,j≤N ( δij + γi li + lj − 1 ( 1− li li )t( li + δ 1 + δ − li )n) , where γi, li (i = 1, 2, . . . , N) are arbitrary parameters but li 6= lj for i 6= j. When li, γi are chosen in Fq, xtn becomes a rational function in Fq(δ). Hence we obtain soliton solutions over PFq by substituting δ with a value in Fq. Figs. 4 and 5 show one and two soliton solutions for the discrete KdV equation (1.1) over the finite fields PF11 and PF19. The corresponding time evolutionary patterns on the field R are also presented for comparison. Next we consider soliton solutions to the generalized discrete KdV equation (2.1). Note that by putting utn := αxtn, vtn := βytn, we obtain ut+1 n = (α(1− β) + utnv t n)vtn β(1− α) + utnv t n , vtn+1 = (β(1− α) + utnv t n)utn α(1− β) + utnv t n . Hence (2.1) is essentially equivalent to the ‘consistency of the discrete potential KdV equation around a 3-cube’ [12]: (u, v)→ (u′, v′), as u′ = vP, v′ = uP−1, P = a+ uv b+ uv . The map is also obtained from discrete BKP equation [6]. We will obtain N -soliton solutions to (2.1) from the N -soliton solutions to the discrete KP equation by a reduction similar to the one adopted in [6]. 6 M. Kanki, J. Mada and T. Tokihiro Figure 4. The one-soliton solution of the discrete KdV equation (1.1) over R (left) and PF11 (right) where δ = 7, γ1 = 2, l1 = 9. Elements of PF11 are represented on the following grayscale: from 0 (white) to 10 (gray) and ∞ (black). Figure 5. The two-soliton solution of the discrete KdV equation (1.1) over R (left) and PF19 (right) where δ = 8, γ1 = 15, l1 = 2, γ2 = 9, l2 = 4. Elements of PF19 are represented on the following grayscale: from 0 (white) to 18 (gray) and ∞ (black). It is difficult to see the interaction of solitons over PF19. Let us consider the four-component discrete KP equation: (a1 − b)τl1tτn + (b− c)τl1τtn + (c− a1)τl1nτt = 0, (3.1) (a2 − b)τl2tτn + (b− c)τl2τtn + (c− a2)τl2nτt = 0. (3.2) Here τ = τ(l1, l2, t, n) ((l1, l2, t, n) ∈ Z4) is the τ -function, and a1, a2, b, c are arbitrary pa- rameters and we use the abbreviated form, τ ≡ τ(l1, l2, t, n), τl1 ≡ τ(l1 + 1, l2, t, n), τl1t ≡ τ(l1 + 1, l2, t+ 1, n) and so on. If we shift l1 → l1 + 1 in (3.2), we have (a2 − b)τl1l2tτl1n + (b− c)τl1l2τl1tn + (c− a2)τl1l2nτl1t = 0. (3.3) Then, by imposing the reduction condition: τl1l2 = τ, (3.4) the equation (3.3) turns to (a2 − b)τtτl1n + (b− c)ττl1tn + (c− a2)τnτl1t = 0. Hence, putting f := τ , g := τl1 , we obtain (a1 − b)gtfn + (b− c)gftn + (c− a1)gnft = 0, (a2 − b)ftgn + (b− c)fgtn + (c− a2)fngt = 0, Discrete Integrable Equations over Finite Fields 7 and fgtn gftn = (a2 − b)ftgn + (c− a2)fngt (a1 − b)gtfn + (c− a1)gnft = (c− a2) + (a2 − b)ftgnfngt (a1 − b) + (c− a1)gnftgtfn . Now we denote xtn := fgn gfn , ytn := gft fgt . (3.5) From the equality xt+1 n ytn+1 = xtny t n = ftgn fngt , xt+1 n ytn = fgtn gftn , if we define α := c−a1 c−b , β := a2−b c−b , we find that xtn, ytn defined in (3.5) satisfy the equation (2.1). The N -soliton solution to (3.1) and (3.2) is known as τ = det 1≤i,j≤N [ δij + γi pi − qj ( qi − a1 pi − a1 )l1 ( qi − a2 pi − a2 )l2 ( qi − b pi − b )t( qi − c pi − c )n] , where {pi, qi}Ni=1 are distinct parameters from each other and {γi}Ni=1 are arbitrary parame- ters [3]. The reduction condition (3.4) gives the constraint,( a1 − pi a1 − qi )( a2 − pi a2 − qi ) = 1, to the parameters {pi, qi}. Since pi 6= qi, the constraint becomes pi + qi = a1 + a2. By putting pi−a1 c−b → pi, γi c−b → γi, ∆ := a1−a2 c−b and l1 = l2 we have f = det 1≤i,j≤N [ δij + γi pi + pj + ∆ ( −pi + β pi + 1− α )t(pi + 1− β −pi + α )n] , (3.6) g = det 1≤i,j≤N [ δij + γi pi + pj + ∆ −∆− pi pi ( −pi + β pi + 1− α )t(pi + 1− β −pi + α )n] . (3.7) Thus we obtain the N -soliton solution of (2.1) by (3.5), (3.6) and (3.7) in the field Fq(ε). We now return to the method of previous section. By substituting α = na + ε, β = nb + ε (na, nb ∈ Fq), we can construct soliton solutions in Fq(ε) for suitable values of {pi, γi} and ∆. We denote the solutions defined in PFq when we put ε = 0 as f̃ , g̃, x̃tn and ỹtn. Figs. 6 and 7 show x̃tn for one and two soliton solutions for the generalized discrete KdV equation (2.1). Lastly, we discuss the periodicity of the soliton solutions over PFq. We have f̃(n+ q − 1, t) = f̃(n, t+ q − 1) = f̃(n, t), g̃(n+ q − 1, t) = g̃(n, t+ q − 1) = g̃(n, t), for all t, n ∈ Z since we have aq−1 ≡ 1 for all a ∈ F×q . Thus the functions f̃ and g̃ have periods q− 1 over Fq. However we cannot conclude that x̃tn and ỹtn are also periodic with periods q− 1. The values of x̃tn may not be periodic when f̃(n, t)g̃(n + 1, t) = 0 and g̃(n, t)f̃(n + 1, t) = 0 (see (3.5)). First we write f(n, t)g(n+ 1, t) and g(n, t)f(n+ 1, t) as follows: f(n, t)g(n+ 1, t) = εlk(ε), g(n, t)f(n+ 1, t) = εmh(ε), 8 M. Kanki, J. Mada and T. Tokihiro Figure 6. The one-soliton solution of the generalized discrete KdV equation (2.1) over R (left) and PF13 (right) where α = 14 15 , β = 5 6 , r1 = − 1 15 , l1 = 1 30 . Elements of PF13 are represented on the following grayscale: from 0 (white) to 12 (gray) and ∞ (black). Figure 7. The two-soliton solution of the generalized discrete KdV equation (2.1) over R (left) and PF13 (right) where α = 14 15 , β = 5 6 , r1 = − 1 6 , l1 = 2 15 , r2 = − 1 30 , l2 = 1 30 . Elements of PF13 are represented on the following grayscale: from 0 (white) to 12 (gray) and ∞ (black). where l,m ∈ Z, h(0) 6= 0, k(0) 6= 0 and k(ε), h(ε) ∈ Fq[ε]. We also write f(n+q−1, t)g(n+q, t) = εl ′ k′(ε), g(n+q−1, t)f(n+q, t) = εm ′ h′(ε) in the same manner. Let us write down the reduction map again: x̃tn =  k(0) h(0) , l = m, 0, l > m, ∞, l < m. In the case when f̃(n, t)g̃(n+ 1, t) = 0 and g̃(n, t)f̃(n+ 1, t) = 0, xtn = f(n,t)g(n+1,t) g(n,t)f(n+1,t) ∈ Fq(ε) and xt+q−1n = f(n+q−1,t)g(n+q,t) g(n+q−1,t)f(n+q,t) ∈ Fq(ε) can have different reductions with respect to ε, since l′ is not necessarily equal to l, and neither m′ is equal to m. The left part of Fig. 8 shows a magnified Discrete Integrable Equations over Finite Fields 9 1 2 3 0 1 2 14 1 2 3 0 1 2 14 , Figure 8. The two-soliton solution of the generalized discrete KdV equation (2.1) over PF13 calculated in two different ways. Elements of PF13 are represented on the following grayscale: from 0 (white) to 12 (gray) and ∞ (black). plot of the same two-soliton solutions as in Fig. 7. In some points x̃tn does not have period 12 (for example x22 6= x142 ) while almost all other points do have this periodicity. If we want to recover full periodicity, there is another reduction to obtain x̃tn and ỹtn from xtn and ytn. This time, we define x̃tn as x̃tn =  k(0) h(0) , l = 0, m = 0, 0, otherwise. The right part of Fig. 8 shows the same two-soliton solution as in the left part but calculated with this new method. We see that all points have periods 12. It is important to determine how to reduce values in PFq(ε) to values in PFq, depending on the properties one wishes the soliton solutions to possess. 4 Discussion and concluding remarks We presented a prescription to obtain dynamical equations over finite fields from discrete equa- tions defined over a field with characteristic 0. The essential trick is to introduce an indetermi- nate (a parameter ε) and regard the equations defined over Fq(ε). By substituting ε with a value in Fq, we can uniquely determine the values of the dependent variables in PFq. Furthermore if we have a one-parameter family of solutions to the original equation, we obtain the solution over a finite field straight away by substituting a suitable value for the parameter. The N -soliton solutions to the discrete KdV equation and the generalized discrete KdV equations over finite fields are thus obtained. Our approach is also applied not only to the other discrete soliton equations but to ordinary nonlinear difference equations such as discrete Painlevé equations. Let us consider dP2 equa- tion [7, 13]: xn+1 + xn−1 = znxn + a x2n − 1 , n ∈ Z, (4.1) 10 M. Kanki, J. Mada and T. Tokihiro where zn := nδ and a, δ are constants. If we examine (4.1) over Fq, we cannot define its time evolution after the dependent variable xn takes±1. However, by regarding a as an indeterminate, we can define the time evolution over Fq(a) and obtain a value in PFq by substituting a value in Fq for a. The effectiveness of this approach is confirmed for wide range of ordinary discrete equations such as the other discrete or q-discrete Painlevé equations and the QRT mappings [16]. There is, however, another choice of indeterminate for the discrete ordinary difference equa- tions. Let (x0, x1) = (y, x) with y ∈ Fq in (4.1). Then xk (k = 2, 3, . . . ) can be regarded as a function of x, i.e. xk ∈ Fq(x). Since we have x2 = z1 + a 2(x− 1) + (z1 − a) 4 +O(x− 1), x3 = −1 +O(x− 1), x4 = y(z1 + a) + 2a+ δz2 a− z3 +O(x− 1), · · · · · · · · · · · · , we can determine x3, x4, . . . by putting x→ 1 despite the fact that they are not well defined if we take x1 = 1 in advance. The time evolution pattern thus obtained coincides with that of our approach with an indeterminate a. The above procedure reminds us the singularity confinement method which is an effective test to judge the integrability of the given equations [5]. In fact, if we consider (4.1) over C and take ε := x−1 as an infinitesimal parameter, the time evolution pattern is exactly the one which passes the singularity confinement test. The grounds of this similarity become clear when one thinks of the theory of the space of initial conditions of the Painlevé equations [8, 9, 10, 11, 15]. As observed by Sakai [15], passing the singularity confinement test is essentially equivalent to the fact that the equation is lifted to an automorphism of the rational surface (the space of initial conditions) obtained by compactification and blowing-up from the original space of initial values C × C. By introducing infinitesimal parameter in the case of singularity confinement test or an indeterminate in our approach, we avoid passing through a point on an exceptional curve generated by blowing-up and approximate the automorphism in an effective way. Hence these three types of approaches, that is, construction of space of initial conditions, application of singularity confinement and the method shown in the present paper, give the same time evolution rule for the discrete Painelevé equations over finite fields. For soliton equations, however, we have difficulty in defining time evolution by constructing the space of initial conditions. Let us return to the equation (2.1). The mapping, (xtn, y t n) 7→ (xt+1 n , ytn+1), is lifted to an automorphism of the surface X̃, where X̃ is obtained from P1 × P1 by blowing up twice at (0,∞) and (∞, 0) respectively: X̃ = A1 ∪ A2, A1 := {(( x, 1 y ) , [ξ : η], [u : v] ) ∣∣∣ xη − 1 y ξ = 0, x ((1− α)η + αξ) v − ((1− β)η + βξ)u = 0 } ⊂ A2 × P1 × P1, A2 := {(( 1 x , y ) , [ξ : η], [w : z] ) ∣∣∣ 1 x ξ − yη = 0, y ((1− β)η + βξ)w − ((1− α)η + αξ) z = 0 } ⊂ A2 × P1 × P1, where [a : b] denotes a set of homogeneous coordinates for P1. But, to define the time evolution Discrete Integrable Equations over Finite Fields 11 of the system with N lattice points from (2.1), we have to consider the mapping (yt1;x t 1, x t 2, . . . , x t N ) 7−→ ( xt+1 1 , xt+1 2 , . . . , xt+1 N ; ytN+1 ) . Since there seems no reasonable decomposition of X̃ into a direct product of two independent spaces, successive use of (2.1) becomes impossible. Note that if we blow down X̃ to P1×P1, the information of the initial values is lost in general. If we intend to construct an automorphism of a space of initial conditions, it will be inevitable to start from PN+1 and blow-up to some huge manifold, which is beyond the scope of the present paper. This difficulty seems to be one of the reasons why the singularity confinement method has not been used for construction of integrable partial difference equations or judgement for their integrability, though some attempts have been proposed in the bilinear form [14]. There should be so many exceptional hyperplanes in the space of initial conditions if it does exist, and it is practically impossible to check all the “singular” patterns in the näıve extension of the singularity confinement test. On the other hand, when we fix the initial condition for a partial difference equation, the number of singular patterns is restricted in general and we have only to enlarge the domain so that the mapping becomes well defined. This is the strategy that we adopted in this article. As shown in the above discussion, the discrete Painlevé equations over finite fields can be treated by several methods. The comparison of the mathematical structure in C with that in Fq is one of the future problems. Clarifying the geometric and/or algebraic meaning of our approach to soliton equations and applications of our approach to the initial value problems related to curves over finite fields are also the problems we shall address in the future. Acknowledgement The authors wish to thank Professors K.M. Tamizhmani, R. Willox and Dr. S. Iwao for useful comments. This work is partially supported by Grant-in-Aid for JSPS Fellows (24-1379). References [1] Bia lecki M., Doliwa A., Discrete Kadomtsev–Petviashvili and Korteweg–de Vries equations over finite fields, Theoret. and Math. Phys. 137 (2003), 1412–1418, nlin.SI/0302064. [2] Bia lecki M., Nimmo J.J.C., On pattern structures of the N -soliton solution of the discrete KP equation over a finite field, J. Phys. A: Math. Theor. 40 (2007), 949–959, nlin.SI/0608041. [3] Date E., Jinbo M., Miwa T., Method for generating discrete soliton equation. II, J. Phys. Soc. Japan 51 (1982), 4125–4131. [4] Doliwa A., Bia lecki M., Klimczewski P., The Hirota equation over finite fields: algebro-geometric approach and multisoliton solutions, J. Phys. A: Math. Gen. 36 (2003), 4827–4839, nlin.SI/0211043. [5] Grammaticos B., Ramani A., Papageorgiou V., Do integrable mappings have the Painlevé property?, Phys. Rev. Lett. 67 (1991), 1825–1828. [6] Kakei S., Nimmo J.J.C., Willox R., Yang–Baxter maps and the discrete KP hierarchy, Glasg. Math. J. 51 (2009), 107–119. [7] Nijhoff F.W., Papageorgiou V.G., Similarity reductions of integrable lattices and discrete analogues of the Painlevé II equation, Phys. Lett. A 153 (1991), 337–344. [8] Okamoto K., Studies on the Painlevé equations. I. Sixth Painlevé equation PVI, Ann. Mat. Pura Appl. (4) 146 (1987), 337–381. [9] Okamoto K., Studies on the Painlevé equations. II. Fifth Painlevé equation PV, Japan. J. Math. (N.S.) 13 (1987), 47–76. [10] Okamoto K., Studies on the Painlevé equations. III. Second and fourth Painlevé equations, PII and PIV, Math. Ann. 275 (1986), 221–255. [11] Okamoto K., Studies on the Painlevé equations. IV. Third Painlevé equation PIII, Funkcial. Ekvac. 30 (1987), 305–332. http://dx.doi.org/10.1023/A:1026000605865 http://arxiv.org/abs/nlin.SI/0302064 http://dx.doi.org/10.1088/1751-8113/40/5/006 http://arxiv.org/abs/nlin.SI/0608041 http://dx.doi.org/10.1143/JPSJ.51.4125 http://dx.doi.org/10.1088/0305-4470/36/17/309 http://arxiv.org/abs/nlin.SI/0211043 http://dx.doi.org/10.1103/PhysRevLett.67.1825 http://dx.doi.org/10.1103/PhysRevLett.67.1825 http://dx.doi.org/10.1017/S0017089508004825 http://dx.doi.org/10.1016/0375-9601(91)90955-8 http://dx.doi.org/10.1007/BF01762370 http://dx.doi.org/10.1007/BF01458459 12 M. Kanki, J. Mada and T. Tokihiro [12] Papageorgiou V.G., Tongas A.G., Veselov A.P., Yang–Baxter maps and symmetries of integrable equations on quad-graphs, J. Math. Phys. 47 (2006), 083502, 16 pages, math.QA/0605206. [13] Ramani A., Grammaticos B., Hietarinta J., Discrete versions of the Painlevé equations, Phys. Rev. Lett. 67 (1991), 1829–1832. [14] Ramani A., Grammaticos B., Satsuma J., Integrability of multidimensional discrete systems, Phys. Lett. A 169 (1992), 323–328. [15] Sakai H., Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys. 220 (2001), 165–229. [16] Tamizhmani K.M., Private communication, 2012. [17] Wolfram S., Statistical mechanics of cellular automata, Rev. Modern Phys. 55 (1983), 601–644. http://dx.doi.org/10.1063/1.2227641 http://arxiv.org/abs/math.QA/0605206 http://dx.doi.org/10.1103/PhysRevLett.67.1829 http://dx.doi.org/10.1016/0375-9601(92)90235-E http://dx.doi.org/10.1007/s002200100446 http://dx.doi.org/10.1103/RevModPhys.55.601 1 Introduction 2 A generalized discrete KdV equation over a function field 2.1 Discrete KdV equation 2.2 Generalized discrete KdV equation 3 Soliton solutions over finite fields 4 Discussion and concluding remarks References