Conformally Equivariant Quantization - a Complete Classification

Conformally equivariant quantization is a peculiar map between symbols of real weight δ and differential operators acting on tensor densities, whose real weights are designed by λ and λ+δ. The existence and uniqueness of such a map has been proved by Duval, Lecomte and Ovsienko for a generic weight...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2012
Автор: Michel, Jean-Philippe
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/148414
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Conformally Equivariant Quantization - a Complete Classification / Jean-Philippe Michel // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148414
record_format dspace
spelling Michel, Jean-Philippe
2019-02-18T11:56:51Z
2019-02-18T11:56:51Z
2012
Conformally Equivariant Quantization - a Complete Classification / Jean-Philippe Michel // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 25 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53A55; 53A30; 17B56; 47E05
DOI: http://dx.doi.org/10.3842/SIGMA.2012.022
https://nasplib.isofts.kiev.ua/handle/123456789/148414
Conformally equivariant quantization is a peculiar map between symbols of real weight δ and differential operators acting on tensor densities, whose real weights are designed by λ and λ+δ. The existence and uniqueness of such a map has been proved by Duval, Lecomte and Ovsienko for a generic weight δ. Later, Silhan has determined the critical values of δ for which unique existence is lost, and conjectured that for those values of δ existence is lost for a generic weight λ. We fully determine the cases of existence and uniqueness of the conformally equivariant quantization in terms of the values of δ and λ. Namely, (i) unique existence is lost if and only if there is a nontrivial conformally invariant differential operator on the space of symbols of weight δ, and (ii) in that case the conformally equivariant quantization exists only for a finite number of λ, corresponding to nontrivial conformally invariant differential operators on λ-densities. The assertion (i) is proved in the more general context of IFFT (or AHS) equivariant quantization.
It is a pleasure to acknowledge Christian Duval, Pierre Mathonet and Valentin Ovsienko for fruitful discussions and the referees for suggesting numerous improvements. I thank the Luxembourgian NRF for support via the AFR grant PDR-09-063.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Conformally Equivariant Quantization - a Complete Classification
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Conformally Equivariant Quantization - a Complete Classification
spellingShingle Conformally Equivariant Quantization - a Complete Classification
Michel, Jean-Philippe
title_short Conformally Equivariant Quantization - a Complete Classification
title_full Conformally Equivariant Quantization - a Complete Classification
title_fullStr Conformally Equivariant Quantization - a Complete Classification
title_full_unstemmed Conformally Equivariant Quantization - a Complete Classification
title_sort conformally equivariant quantization - a complete classification
author Michel, Jean-Philippe
author_facet Michel, Jean-Philippe
publishDate 2012
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Conformally equivariant quantization is a peculiar map between symbols of real weight δ and differential operators acting on tensor densities, whose real weights are designed by λ and λ+δ. The existence and uniqueness of such a map has been proved by Duval, Lecomte and Ovsienko for a generic weight δ. Later, Silhan has determined the critical values of δ for which unique existence is lost, and conjectured that for those values of δ existence is lost for a generic weight λ. We fully determine the cases of existence and uniqueness of the conformally equivariant quantization in terms of the values of δ and λ. Namely, (i) unique existence is lost if and only if there is a nontrivial conformally invariant differential operator on the space of symbols of weight δ, and (ii) in that case the conformally equivariant quantization exists only for a finite number of λ, corresponding to nontrivial conformally invariant differential operators on λ-densities. The assertion (i) is proved in the more general context of IFFT (or AHS) equivariant quantization.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148414
citation_txt Conformally Equivariant Quantization - a Complete Classification / Jean-Philippe Michel // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 25 назв. — англ.
work_keys_str_mv AT micheljeanphilippe conformallyequivariantquantizationacompleteclassification
first_indexed 2025-12-07T17:01:40Z
last_indexed 2025-12-07T17:01:40Z
_version_ 1850869705347170304