Deformed su(1,1) Algebra as a Model for Quantum Oscillators

The Lie algebra su(1,1) can be deformed by a reflection operator, in such a way that the positive discrete series representations of su(1,1) can be extended to representations of this deformed algebra su(1,1)γ. Just as the positive discrete series representations of su(1,1) can be used to model a qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
Hauptverfasser: Jafarov, E.I., Stoilova, N.I., Van der Jeugt, J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2012
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/148417
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Deformed su(1,1) Algebra as a Model for Quantum Oscillators / E.I. Jafarov, N.I. Stoilova, J. Van der Jeugt // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 33 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The Lie algebra su(1,1) can be deformed by a reflection operator, in such a way that the positive discrete series representations of su(1,1) can be extended to representations of this deformed algebra su(1,1)γ. Just as the positive discrete series representations of su(1,1) can be used to model a quantum oscillator with Meixner-Pollaczek polynomials as wave functions, the corresponding representations of su(1,1)γ can be utilized to construct models of a quantum oscillator. In this case, the wave functions are expressed in terms of continuous dual Hahn polynomials. We study some properties of these wave functions, and illustrate some features in plots. We also discuss some interesting limits and special cases of the obtained oscillator models.