Deformed su(1,1) Algebra as a Model for Quantum Oscillators

The Lie algebra su(1,1) can be deformed by a reflection operator, in such a way that the positive discrete series representations of su(1,1) can be extended to representations of this deformed algebra su(1,1)γ. Just as the positive discrete series representations of su(1,1) can be used to model a qu...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2012
Автори: Jafarov, E.I., Stoilova, N.I., Van der Jeugt, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/148417
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Deformed su(1,1) Algebra as a Model for Quantum Oscillators / E.I. Jafarov, N.I. Stoilova, J. Van der Jeugt // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 33 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148417
record_format dspace
spelling Jafarov, E.I.
Stoilova, N.I.
Van der Jeugt, J.
2019-02-18T12:06:16Z
2019-02-18T12:06:16Z
2012
Deformed su(1,1) Algebra as a Model for Quantum Oscillators / E.I. Jafarov, N.I. Stoilova, J. Van der Jeugt // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 33 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 81R05; 81Q65; 33C45
DOI: http://dx.doi.org/10.3842/SIGMA.2012.025
https://nasplib.isofts.kiev.ua/handle/123456789/148417
The Lie algebra su(1,1) can be deformed by a reflection operator, in such a way that the positive discrete series representations of su(1,1) can be extended to representations of this deformed algebra su(1,1)γ. Just as the positive discrete series representations of su(1,1) can be used to model a quantum oscillator with Meixner-Pollaczek polynomials as wave functions, the corresponding representations of su(1,1)γ can be utilized to construct models of a quantum oscillator. In this case, the wave functions are expressed in terms of continuous dual Hahn polynomials. We study some properties of these wave functions, and illustrate some features in plots. We also discuss some interesting limits and special cases of the obtained oscillator models.
E.I. Jafarov was supported by a postdoc fellowship from the Azerbaijan National Academy of Sciences. N.I. Stoilova was supported by project P6/02 of the Interuniversity Attraction Poles Programme (Belgian State – Belgian Science Policy).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Deformed su(1,1) Algebra as a Model for Quantum Oscillators
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Deformed su(1,1) Algebra as a Model for Quantum Oscillators
spellingShingle Deformed su(1,1) Algebra as a Model for Quantum Oscillators
Jafarov, E.I.
Stoilova, N.I.
Van der Jeugt, J.
title_short Deformed su(1,1) Algebra as a Model for Quantum Oscillators
title_full Deformed su(1,1) Algebra as a Model for Quantum Oscillators
title_fullStr Deformed su(1,1) Algebra as a Model for Quantum Oscillators
title_full_unstemmed Deformed su(1,1) Algebra as a Model for Quantum Oscillators
title_sort deformed su(1,1) algebra as a model for quantum oscillators
author Jafarov, E.I.
Stoilova, N.I.
Van der Jeugt, J.
author_facet Jafarov, E.I.
Stoilova, N.I.
Van der Jeugt, J.
publishDate 2012
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The Lie algebra su(1,1) can be deformed by a reflection operator, in such a way that the positive discrete series representations of su(1,1) can be extended to representations of this deformed algebra su(1,1)γ. Just as the positive discrete series representations of su(1,1) can be used to model a quantum oscillator with Meixner-Pollaczek polynomials as wave functions, the corresponding representations of su(1,1)γ can be utilized to construct models of a quantum oscillator. In this case, the wave functions are expressed in terms of continuous dual Hahn polynomials. We study some properties of these wave functions, and illustrate some features in plots. We also discuss some interesting limits and special cases of the obtained oscillator models.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148417
citation_txt Deformed su(1,1) Algebra as a Model for Quantum Oscillators / E.I. Jafarov, N.I. Stoilova, J. Van der Jeugt // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 33 назв. — англ.
work_keys_str_mv AT jafarovei deformedsu11algebraasamodelforquantumoscillators
AT stoilovani deformedsu11algebraasamodelforquantumoscillators
AT vanderjeugtj deformedsu11algebraasamodelforquantumoscillators
first_indexed 2025-12-01T15:53:21Z
last_indexed 2025-12-01T15:53:21Z
_version_ 1850860657681891328