Mutations of Laurent Polynomials and Flat Families with Toric Fibers
We give a general criterion for two toric varieties to appear as fibers in a flat family over P¹. We apply this to show that certain birational transformations mapping a Laurent polynomial to another Laurent polynomial correspond to deformations between the associated toric varieties.
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2012 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2012
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/148435 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Mutations of Laurent Polynomials and Flat Families with Toric Fibers / N.O. Ilten // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148435 |
|---|---|
| record_format |
dspace |
| spelling |
Ilten, N.O. 2019-02-18T12:19:55Z 2019-02-18T12:19:55Z 2012 Mutations of Laurent Polynomials and Flat Families with Toric Fibers / N.O. Ilten // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 6 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14M25; 14D06; 53D37 DOI: http://dx.doi.org/10.3842/SIGMA.2012.047 https://nasplib.isofts.kiev.ua/handle/123456789/148435 We give a general criterion for two toric varieties to appear as fibers in a flat family over P¹. We apply this to show that certain birational transformations mapping a Laurent polynomial to another Laurent polynomial correspond to deformations between the associated toric varieties. This paper is a contribution to the Special Issue “Mirror Symmetry and Related Topics”. The full collection is available at http://www.emis.de/journals/SIGMA/mirror symmetry.html. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Mutations of Laurent Polynomials and Flat Families with Toric Fibers Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Mutations of Laurent Polynomials and Flat Families with Toric Fibers |
| spellingShingle |
Mutations of Laurent Polynomials and Flat Families with Toric Fibers Ilten, N.O. |
| title_short |
Mutations of Laurent Polynomials and Flat Families with Toric Fibers |
| title_full |
Mutations of Laurent Polynomials and Flat Families with Toric Fibers |
| title_fullStr |
Mutations of Laurent Polynomials and Flat Families with Toric Fibers |
| title_full_unstemmed |
Mutations of Laurent Polynomials and Flat Families with Toric Fibers |
| title_sort |
mutations of laurent polynomials and flat families with toric fibers |
| author |
Ilten, N.O. |
| author_facet |
Ilten, N.O. |
| publishDate |
2012 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We give a general criterion for two toric varieties to appear as fibers in a flat family over P¹. We apply this to show that certain birational transformations mapping a Laurent polynomial to another Laurent polynomial correspond to deformations between the associated toric varieties.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148435 |
| citation_txt |
Mutations of Laurent Polynomials and Flat Families with Toric Fibers / N.O. Ilten // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 6 назв. — англ. |
| work_keys_str_mv |
AT iltenno mutationsoflaurentpolynomialsandflatfamilieswithtoricfibers |
| first_indexed |
2025-12-07T17:15:55Z |
| last_indexed |
2025-12-07T17:15:55Z |
| _version_ |
1850870601241067520 |