Some Remarks on Very-Well-Poised ₈∅₇ Series
Nonpolynomial basic hypergeometric eigenfunctions of the Askey-Wilson second order difference operator are known to be expressible as very-well-poised ₈∅₇ series. In this paper we use this fact to derive various basic hypergeometric and theta function identities. We relate most of them to identities...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2012 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2012
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/148446 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Some Remarks on Very-Well-Poised ₈∅₇ Series / J.V. Stokman // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 26 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148446 |
|---|---|
| record_format |
dspace |
| spelling |
Stokman, J.V. 2019-02-18T12:38:03Z 2019-02-18T12:38:03Z 2012 Some Remarks on Very-Well-Poised ₈∅₇ Series / J.V. Stokman // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 26 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33D15; 33D45 DOI: http://dx.doi.org/10.3842/SIGMA.2012.039 https://nasplib.isofts.kiev.ua/handle/123456789/148446 Nonpolynomial basic hypergeometric eigenfunctions of the Askey-Wilson second order difference operator are known to be expressible as very-well-poised ₈∅₇ series. In this paper we use this fact to derive various basic hypergeometric and theta function identities. We relate most of them to identities from the existing literature on basic hypergeometric series. This leads for example to a new derivation of a known quadratic transformation formula for very-well-poised ₈∅₇ series. We also provide a link to Chalykh's theory on (rank one, BC type) Baker-Akhiezer functions. I thank Tom Koornwinder for drawing my attention to the quadratic transformation formula for continuous q-Jacobi polynomials. I thank Mizan Rahman for pointing out to me how the quadratic transformations (5.2) and (5.3) for very-well-poised ₈∅₇ series are related to the known quadratic transformation formula [6, (3.5.10)] (see Reamark 5.3(i)). en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Some Remarks on Very-Well-Poised ₈∅₇ Series Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Some Remarks on Very-Well-Poised ₈∅₇ Series |
| spellingShingle |
Some Remarks on Very-Well-Poised ₈∅₇ Series Stokman, J.V. |
| title_short |
Some Remarks on Very-Well-Poised ₈∅₇ Series |
| title_full |
Some Remarks on Very-Well-Poised ₈∅₇ Series |
| title_fullStr |
Some Remarks on Very-Well-Poised ₈∅₇ Series |
| title_full_unstemmed |
Some Remarks on Very-Well-Poised ₈∅₇ Series |
| title_sort |
some remarks on very-well-poised ₈∅₇ series |
| author |
Stokman, J.V. |
| author_facet |
Stokman, J.V. |
| publishDate |
2012 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
Nonpolynomial basic hypergeometric eigenfunctions of the Askey-Wilson second order difference operator are known to be expressible as very-well-poised ₈∅₇ series. In this paper we use this fact to derive various basic hypergeometric and theta function identities. We relate most of them to identities from the existing literature on basic hypergeometric series. This leads for example to a new derivation of a known quadratic transformation formula for very-well-poised ₈∅₇ series. We also provide a link to Chalykh's theory on (rank one, BC type) Baker-Akhiezer functions.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148446 |
| citation_txt |
Some Remarks on Very-Well-Poised ₈∅₇ Series / J.V. Stokman // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 26 назв. — англ. |
| work_keys_str_mv |
AT stokmanjv someremarksonverywellpoised87series |
| first_indexed |
2025-11-24T16:26:16Z |
| last_indexed |
2025-11-24T16:26:16Z |
| _version_ |
1850482773819654144 |
| fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 8 (2012), 039, 17 pages
Some Remarks on Very-Well-Poised 8φ7 Series
Jasper V. STOKMAN
Korteweg–de Vries Institute for Mathematics, University of Amsterdam,
Science Park 904, 1098 XH Amsterdam, The Netherlands
E-mail: j.v.stokman@uva.nl
URL: http://staff.science.uva.nl/~jstokman/
Received April 05, 2012, in final form June 18, 2012; Published online June 27, 2012
http://dx.doi.org/10.3842/SIGMA.2012.039
Abstract. Nonpolynomial basic hypergeometric eigenfunctions of the Askey–Wilson second
order difference operator are known to be expressible as very-well-poised 8φ7 series. In this
paper we use this fact to derive various basic hypergeometric and theta function identities.
We relate most of them to identities from the existing literature on basic hypergeometric
series. This leads for example to a new derivation of a known quadratic transformation
formula for very-well-poised 8φ7 series. We also provide a link to Chalykh’s theory on (rank
one, BC type) Baker–Akhiezer functions.
Key words: very-well-poised basic hypergeometric series; Askey–Wilson functions; quadratic
transformation formulas; theta functions
2010 Mathematics Subject Classification: 33D15; 33D45
1 Introduction
In this paper we present derivations of various basic hypergeometric and theta function iden-
tities using the interpretation of very-well-poised 8φ7 series as eigenfunctions of the Askey–
Wilson second order difference operator D. For instance, we reobtain a nonstandard type three
term transformation formula for very-well-poised 8φ7 series [7] as the connection formula for the
asymptotically free eigenfunctions of D, we investigate the eigenfunctions of D with trivial quan-
tum monodromy and relate them to (rank one, BC type) Baker–Akhiezer functions from [4, 5],
we rederive the quadratic transformation formula [6, (3.5.10)] for very-well-poised 8φ7 series,
and we obtain various theta function identities by translating symmetries of the Askey–Wilson
function and of the asymptotically free eigenfunction of D in terms of the associated normalized
c-functions.
The most general family of orthogonal polynomials satisfying a second order q-difference
equation is the family of Askey–Wilson polynomials [1]. For our purposes it is convenient to
view the associated difference equations as eigenvalue equations for the second order Askey–
Wilson second order difference operator D already mentioned in the previous paragraph. The
operator D depends, besides on the difference step-size and the deformation parameter q, on
four additional free parameters.
Nonpolynomial basic hypergeometric eigenfunctions of D have been subject of study in va-
rious papers (see, e.g., [8, 9, 10, 19, 20, 24, 26]). Important examples are the Askey–Wilson
function E(·, z) and the asymptotically free eigenfunction Φ(·, z) (the corresponding eigenvalue
depends in an explicit way on qz + q−z ∈ C). They are defined provided that 0 < |q| < 1.
They are selfdual eigenfunctions (the role of the argument and z is interchangeable). They
naturally arise in harmonic analysis on the quantum SU(1, 1) group and in the study of the
double affine Hecke algebra of type C∨C1 (the rank one Koornwinder case), see, e.g., [11]
and [24, 25] respectively. From this representation theoretic viewpoint E(·, z) plays the role of
the spherical function and Φ(·, z) the role of the Harish-Chandra series.
mailto:j.v.stokman@uva.nl
http://staff.science.uva.nl/~jstokman/
http://dx.doi.org/10.3842/SIGMA.2012.039
2 J.V. Stokman
Ruijsenaars’ R-function [19] is another nonpolynomial selfdual eigenfunction of D which is
required to satisfy yet another second order difference equation of Askey–Wilson type. The
step-direction of the two Askey–Wilson second order difference equations are allowed to be co-
linear (which corresponds to deformation parameter q being of modulus one). The R-function
arises as matrix coefficient of representations of the quantum double of the quantized universal
enveloping algebra of sl2, see [2].
The Askey–Wilson function E(·, z) can be explicitly expressed in terms of the asymptotically
free eigenfunctions Φ(·,±z). The elliptic function c(·, z) governing the expansion coefficients,
E(·, z) = c(·, z)Φ(·, z) + c(·,−z)Φ(·,−z),
is called the (normalized) c-function [10]. It is explicitly given as quotient of theta functions.
The selfduality of E and Φ and the fact that E(−x, z) = E(x, z) then allow us to express Φ(−x, z)
in terms of Φ(x,±z) (connection formula). The cases when the connection coefficient formula
trivializes is particularly interesting since it directly relates to the theory of Baker–Akhiezer
functions [4, 5]. We discuss this in Section 3.
Suitable two parameter specializations of the Askey–Wilson polynomials yield the continuous
q-Jacobi polynomials. They have appeared in two guises (see [17] and [1]) which are interrelated
by a quadratic transformation formula going back to Singh [22], see also [1, § 4] and [6, § 3.10].
This quadratic transformation formula was derived in [1] using the orthogonality relations of the
Askey–Wilson polynomials. Ruijsenaars [20] stressed that for these parameter specializations
the Askey–Wilson second order difference operator D factorizes up to an additive constant as
a square of an Askey–Wilson type second order difference operator with step-size half of the step-
size of D. We use this observation to prove a quadratic transformation formula for a two param-
eter family of the asymptotically free eigenfunction Φ(·, z) of D. This complements Ruijsenaars’
results [20], where he lifted the quadratic transformation formula for continuous q-Jacobi poly-
nomials to a quadratic transformation formula for a two parameter subfamily of the R-function.
Using the known explicit expression of Φ(·, z) in terms of basic hypergeometric series we
link the above mentioned results to various known identities for very-well-poised 8φ7 series. For
example, the quadratic transformation formula for Φ(·, z) becomes the known quadratic transfor-
mation formula [6, (3.5.10)] for very-well-poised 8φ7 series after applying suitable transformation
formulas to both sides of the identity, see Remark 5.3(i) (this was observed by M. Rahman).
Combining symmetries of the Askey–Wilson function with its c-function expansion yields
nontrivial identities for the c-function, hence nontrivial theta function identities. For instance,
the fact that E(·, z) is invariant under negating the argument yields a theta function identity
which is a six parameter dependent subcase of a theta function identity [6, Exercise 5.22] due to
Slater [23]. The fact that Φ(·,±z) satisfies a quadratic transformation formula but the Askey–
Wilson function E(·, z) does not, yields a nontrivial identity for the c-function and consequently
a quadratic type theta function identity (7.4).
The results in the present paper play an important role in the study of the spectral problem
of the trigonometric Macdonald–Ruijsenaars–Cherednik commuting family of difference ope-
rators associated to root systems. They are for instance needed in the asymptotic analysis
of q-analogues of Harish-Chandra series associated to root systems (cf. [13, 14, 15, 25]) along
codimension one facets of the Weyl chamber. I will return to this topic in a future work.
2 Eigenfunctions of the Askey–Wilson
second order difference operator
We use, besides a deformation parameter 0 < q = e2π
√
−1τ < 1 (τ ∈
√
−1R>0) and a choice
of step-size s ∈ Q>0, four free parameters {κ, λ, υ, ς} which we call Hecke parameters (this
Some Remarks on Very-Well-Poised 8φ7 Series 3
name comes from their interpretation as multiplicity parameters in the Cherednik–Macdonald
theory of the double affine Hecke algebra of type C∨C1, see [16]). We assume that the Hecke
parameters κ, λ, υ and ς are real. We set qx := e2π
√
−1τx for x ∈ C. In the paper q will be
fixed throughout. Step-sizes s and s
2 will simultaneously appear in formulas. One can restrict
without loss of generality to considering step-sizes 2 and 1, but formulas are more transparent
when arbitrary values s of the step size are taken into account because it makes the s-dependence
of the Askey–Wilson parameters
{as, bs, cs, ds} :=
{
qκ+λ,−qκ−λ, q
s
2
+υ+ς ,−q
s
2
+υ−ς}
explicit. We define dual Askey–Wilson parameters by{
ãs, b̃s, c̃s, d̃s
}
:=
{
qκ+υ,−qκ−υ, q
s
2
+λ+ς ,−q
s
2
+λ−ς},
i.e. the roles of the Hecke parameters λ and υ are interchanged. The parameters as, bs, ãs
and b̃s do not depend on s, we therefore occasionally omit the subindex s for these Askey–
Wilson parameters. Interchanging λ and υ defines an involution on the set of Hecke parameters,
hence also on the associated set of Askey–Wilson parameters. In addition we have
ã2s = q−sabcd, ãsb̃s = asbs,
qsãs
b̃s
= csds,
ãsc̃s = ascs,
qsãs
c̃s
= bsds, ãsd̃s = asds,
qsãs
d̃s
= bscs.
We now first recall the asymptotically free eigenfunction of the Askey–Wilson [1] second order
qs-difference operator, which we will regard here as a second order difference operator with step
size s. Explicitly, the Askey–Wilson second order difference operator D, acting on meromorphic
functions on C, is defined by(
Df
)
(x) := A(x)
(
f(x+ s)− f(x)
)
+A(−x)
(
f(x− s)− f(x)
)
,
A(x) :=
(1− asqx)(1− bsqx)(1− csqx)(1− dsqx)
ãs(1− q2x)(1− qs+2x)
.
Sometimes it is important to write explicitly the dependence on the parameters, in which case
we write D as D(s)
κ,λ,υ,ς;q.
Remark 2.1. The Askey–Wilson second order difference operator D can be interpreted as
a second order qs-difference operator when acting on τ−1-translation invariant meromorphic
functions on C (which are the meromorphic functions of the form g(qx) with g meromorphic
on C∗).
We now define the elementary function W (x, z) = W (x, z;κ, λ, υ, ς; q, s) by
W (x, z) := q(κ+λ+x)(κ+υ+z)/s.
Note that W (x+ s, z) = qκ+υ+zW (x, z) = ãqzW (x, z).
For generic bj the r+1φr basic hypergeometric series is defined by the convergent power series
r+1φr
(
a1, a2, . . . , ar+1
b1, b2, . . . , br
; q, z
)
:=
∞∑
j=0
(
a1, a2, . . . , ar+1; q
)
j(
q, b1, . . . , br; q
)
j
zj , |z| < 1,
4 J.V. Stokman
where
(
a1, . . . , as; q
)
j
=
s∏
r=1
j−1∏
i=0
(1 − arqi) for j ∈ Z≥0 ∪ {∞} (empty products are equal to one
by convention). The very-well-poised 8φ7 series is defined by
8W7
(
α0;α1, α2, α3, α4, α5; q, z
)
= 8φ7
(
α0, qα
1
2
0 ,−qα
1
2
0 , α1, . . . , α5
α
1
2
0 ,−α
− 1
2
0 , qα0/α1, . . . , qα0/α5
; q, z
)
=
∞∑
r=0
1− α0q
2r
1− α0
zr
5∏
j=0
(
αj ; q
)
r(
qα0/αj ; q
)
r
.
In case z = α2
0q
2/α1α2α3α4α5 it has a meromorphic continuation to
(
C∗
)6
as function of
(α0, α1, . . . , α5). This follows from the identity [6, (III.36)] expressing such very-well-poised 8φ7
series as a sum of two 4φ3 series. Define the holomorphic function St(x) = St(x;κ, λ, υ, ς; q, s)
(“St” is standing for singular term) in x ∈ C by
St(x) :=
(
qs+x/as, q
s+x/bs, q
s+x/cs, q
s+x/ds; q
s
)
∞.
We write Std(z) := St(z;κ, υ, λ, ς; q, s) for the singular term with respect to dual parameters,
Std(z) =
(
qs+z/ãs, q
s+z/b̃s, q
s+z/c̃s, q
s+z/d̃s; q
s
)
∞.
The following proposition combines and refines observations from [9, 10, 25].
Proposition 2.2. There exist unique holomorphic functions Γr on C (r ≥ 0) satisfying the
following three conditions,
(1) Γ0(z) =
(
qs+2z; qs
)
∞.
(2) The power series Ψ(x, z) :=
∞∑
r=0
Γr(z)q
rx is normally convergent on compacta of (x, z) ∈
C× C (consequently Ψ(x, z) is a holomorphic function in (x, z) ∈ C× C).
(3) The meromorphic function
Φ(x, z) :=
W (x, z)
St(x)Std(z)
Ψ(x, z) (2.1)
satisfies((
Dx − qz − q−z + ã+ ã−1
)
Φ
)
(x, z) = 0, (2.2)
where Dx stands for the Askey–Wilson second order difference operator D = D(s)
κ,λ,υ,ς;q
acting on the x-variable.
Furthermore, Γr is τ−1-translation invariant and
Ψ(x, z) =
( qs+x+zas
ãs
, q
s+x+zbs
ãs
, q
s+x+zcs
ãs
, q
s+x+z ãs
ds
, qs+2z, dsq
x; qs
)
∞( q2s+x+2z
ds
; qs
)
∞
× 8W7
(
qs+x+2z
ds
;
qs+z
ãs
,
qs+z
d̃s
, b̃sq
z, c̃sq
z,
qs+x
ds
; qs, dsq
x
)
(2.3)
if |dsqx| < 1.
Some Remarks on Very-Well-Poised 8φ7 Series 5
Proof. The explicit expression (2.3) is
Ψ(x, z) =
( qs+x+zas
ãs
, q
s+x+zbs
ãs
, q
s+x+zcs
ãs
, q
s+x+z ãs
ds
, qs+2z, dsq
x; qs
)
∞( qs+x+2z
ds
; qs
)
∞
×
∞∑
r=0
(
1− qs+2sr+x+2z
ds
) ( qs+z
ãs
, q
s+z
d̃s
, b̃sq
z, c̃sq
z, q
s+x
ds
; qs
)
r
drsq
rx( qs+x+z ãs
ds
, q
s+x+zas
ãs
, q
s+x+zbs
ãs
, q
s+x+zcs
ãs
, qs+2z; qs
)
r
. (2.4)
It is a well defined meromorphic function in (x, z) ∈ C × C provided that |dsqx| < 1, with
possible poles at qs+sr+x+2z = ds (r ∈ Z≥0). It can be expressed as sum of two 4φ3 series using
[6, (III.36)] with parameters (a, b, c, d, e, f, q) in [6, (III.36)] specialized to
(qs+x+2z/ds, q
s+z/ãs, q
s+z/d̃s, b̃sq
z, c̃sq
z, qs+x/ds, q
s),
leading to the expression
Ψ(x, z) =
( qs+x
as
, dsq
x, q
s+z
b̃s
, q
s+z
c̃s
, q
s+x+zas
ãs
, q
s+x+z ãs
ds
; qs
)
∞(
ds
as
; qs
)
∞
× 4φ3
(
asq
x, q
s+x
ds
, b̃sq
z, c̃sq
z
qs+x+zas
ãs
, q
s+x+z ãs
ds
, q
sas
ds
; qs, qs
)
+
(
asq
x, q
s+x
ds
, b̃sq
z, c̃sq
z, q
s+x+z ãs
as
, q
s+x+z d̃s
as
; qs
)
∞(
as
ds
; qs
)
∞
× 4φ3
(
qs+x
as
, dsq
x, q
s+z
b̃s
, q
s+z
c̃s
qs+x+z ãs
as
, q
s+x+z d̃s
as
, q
sds
as
; qs, qs
)
. (2.5)
This alternative expression provides the meromorphic continuation and shows that Ψ(x, z) is
holomorphic in (x, z) ∈ C × C. The expression (2.4) of Ψ(x, z) shows that Ψ(x, z) satisfies (1)
and (2). By [9] (see also [10] for notations close to the present one), the resulting meromorphic
function Φ(x, z) (see (2.1)) indeed satisfies the difference equation (2.2).
It remains to prove uniqueness. If a series of the form
Φ(x, z) =
W (x, z)
St(x)Std(z)
∞∑
r≥0
Γr(z)q
rx
is a formal solution of (2.2) then the Γr(z) (r ≥ 0) satisfy recursion relations of the form
ã(qsr − 1)(qz − q−sr−z)Γr(z) =
r−1∑
t=0
vrt (q
z)Γt(z), r ≥ 1
for some Laurent polynomials vrt . This shows that the Γr(z) (r ≥ 1) are uniquely determined
by Γ0(z). �
If confusion may arise about the parameter dependencies then we write the asymptotically
free solution Φ(x, z) as Φ(x, z;κ, λ, υ, ς; q, s) and Ψ(x, z) as Ψ(x, z;κ, λ, υ, ς; q, s).
Remark 2.3. The characterization of Φ(x, z) as eigenfunction of D is equivalent to a characteri-
zation of Ψ(x, z) =
∞∑
r=0
Γr(z)q
rx as eigenfunction of the second order difference operator obtained
from D by gauging it with gauge factor W (·, z)/St(·). The gauged difference operator and the
6 J.V. Stokman
relevant eigenvalue are symmetric under arbitrary permutations of the Askey–Wilson parame-
ters as, bs, cs, ds. Since the normalization Γ0(z) =
(
qs+2z; qs
)
∞ of Ψ(x, z) is independent of the
Askey–Wilson parameters, it follows that Ψ(x, z) is symmetric under arbitrary permutations of
the Askey–Wilson parameters as, bs, cs, ds.
Let θ(u; q) :=
(
u, q/u; q
)
∞ be the modified Jacobi theta function and write
θ(u1, . . . , ur; q) =
r∏
i=1
θ(ui; q)
for products of theta functions. Define the (normalized) c-function c(x, z) = c(x, z;κ, λ, υ, ς; q, s)
by
c(x, z) :=
θ
(
ãsq
−z, b̃sq
−z, c̃sq
−z, dsq
x−z
ãs
; qs
)
W (x, z)θ
(
q−2z, dsqx; qs
) . (2.6)
Using θ(qu; q) = −u−1θ(u; q) it follows that c(x + s, z) = c(x, z) and c(x, z + s) = c(x, z). We
write cd(x, z) = c(x, z;κ, υ, λ, ς; q, s) for the c-function with respect to dual parameters.
The Askey–Wilson function E(x, z) = E(x, z;κ, λ, υ, ς; q, s) is defined by
E(x, z) :=
( ãsqs+z−x
ds
, ãsq
s+z+x
ds
, asbs, ascs,
qsas
ds
; qs
)
∞( qs+x
ds
, q
s−x
ds
, q
s+z
d̃s
, ãsb̃sc̃sqz; qs
)
∞
× 8W7
(
ãsb̃sc̃sq
−s+z; asq
x, asq
−x, ãsq
z, b̃sq
z, c̃sq
z; qs,
qs−z
d̃s
)
(2.7)
for |qs−z/d̃s| < 1 (see [10]). Using [6, (III.36)] to express E(x, z) as sum of two 4φ3 series it follows
that E(·, ·) has a meromorphic extension to C × C. We write Ed and Φd for the meromorphic
functions E and Φ with respect to dual parameters. The following properties of E and Φ are
known from [10, 25] (cf. also [8, 9, 26]).
Proposition 2.4.
(i) E(x, z) = Ed(z, x) (selfduality).
(ii) E(−x, z) = E(x, z) and E(x,−z) = E(x, z).
(iii) Φ(x, z) = Φd(z, x) (selfduality).
(iv) E(x, z) = c(x, z)Φ(x, z) + c(x,−z)Φ(x,−z) (c-function expansion).
Proof. (i) This follows from the transformation formula [6, (III.23)] for very-well-poised 8φ7
series.
(ii) By the explicit expression (2.7) it is clear that E(−x, z) = E(x, z). By (i) it then also
follows that E(x,−z) = E(x, z).
(iii) This follows again by application of the transformation formula [6, (III.23)] for very-
well-poised 8φ7 series.
(iv) Use Bailey’s three term transformation formula [6, (III.37)] for very-well-poised 8φ7
series. �
Remark 2.5. The selfduality of Φ(x, z) and E(x, z) ensures that Φ(x, ·) and E(x, ·) are eigen-
functions of the Askey–Wilson second order difference operator with respect to dual parameters.
Note that the Askey–Wilson second order difference operator D is invariant under x 7→ −x,
hence Φ(−x, z) is again an eigenfunction of Dx with eigenvalue qz + q−z + ã + ã−1. It can be
expressed in terms of the eigenfunctions Φ(x, z) and Φ(x,−z) as follows.
Some Remarks on Very-Well-Poised 8φ7 Series 7
Corollary 2.6.
Φ(−x, z) =
(
c(x, z)− cd(z, x)
cd(z,−x)
)
Φ(x, z) +
c(x,−z)
cd(z,−x)
Φ(x,−z) (2.8)
(connection formula).
Proof. By the previous proposition we have
E(x, z) = Ed(z,−x) = cd(z,−x)Φd(z,−x) + cd(z, x)Φd(z, x)
= cd(z, x)Φ(x, z) + cd(z,−x)Φ(−x, z).
Compared with the c-function expansion for E(x, z) (see Proposition 2.4(iv)) we get the desired
result. �
Remark 2.7. The connection formula (2.8) is not a direct consequence of Bailey’s three term
transformation formula [6, (III.37)] for very-well-poised 8φ7 series. This is reflected by the fact
that the coefficient of Φ(x, z) in (2.8) does not admit an explicit expression as a single product
of theta functions. The connection formula (2.8) is though directly related to the three term
transformation formula [7, (5.8)].
Corollary 2.8. The c-function satisfies
c(x, z)cd(z,−x)cd(−z,−x) + c(−x, z)cd(z, x)cd(−z,−x)
= c(x, z)c(−x, z)cd(−z,−x) + c(x, z)c(−x,−z)cd(z,−x). (2.9)
Proof. Since E(−x, z) = E(x, z) we have
c(x, z)Φ(x, z) + c(x,−z)Φ(x,−z) = c(−x, z)Φ(−x, z) + c(−x,−z)Φ(−x,−z).
Applying (2.8) twice to the right hand side of this formula implies
α(x, z)Φ(x, z) = −α(x,−z)Φ(x,−z) (2.10)
with the function α(x, z) given by
α(x, z) =
c(−x, z)c(x, z)− c(−x, z)cd(z, x)
cd(z,−x)
+
c(−x,−z)c(x, z)
cd(−z,−x)
− c(x, z).
Replace in (2.10) the variable x by x+ms and consider the asymptotic behaviour as m→∞ of
both sides, using the fact that c(x, z) is s-translation invariant in both x and z and using that
ã−mq−mzΦ(x+ms, z) = Γ0(z)
(
1 +O(qsm)
)
as m→∞. It gives α(x, z) = 0. This is equivalent to (2.9). �
Remark 2.9. Substituting in (2.9) the explicit expression (2.6) of the c-function c(x, z) gives
the theta function identity
θ
(
d
ã
qx+z,
d
ã
qx−z, aqx, bqx, cqx, dq−x, q2z; q
)
− θ
(
d
ã
q−x+z,
d
ã
qx+z, ãqz, b̃qz, c̃qz, d̃q−z, q2x; q
)
= q2xθ
(
d
ã
q−x−z,
d
ã
q−x+z, aq−x, bq−x, cq−x, dqx, q2z; q
)
− q2zθ
(
d
ã
q−x−z,
d
ã
qx−z, ãq−z, b̃q−z, c̃q−z, d̃qz, q2x; q
)
,
8 J.V. Stokman
where we have taken s = 1 and have written a = a1, . . . , d = d1 (and similarly for the dual
parameters). This is a special case of Slater’s theta function identity [6, Exercise 5.22], with the
parameters (a, b, c, d, e, f, g, h) in [6, Exercise 5.22] specialized to(
1,
d
ã
q−x+z, ãq−z, b̃q−z, c̃q−z,
q1−z
d̃
,
d
ã
qx+z, q2z
)
.
Note that Slater’s formula [6, Exercise 5.22] is more general since it has, besides q, seven free
parameters, while the formula (2.9) only has six.
3 The case of trivial quantum monodromy
Determining the monodromy representation for Gauss’ second order hypergeometric differential
equation is equivalent to deriving its connection coefficient formulas. The connection coefficient
formulas explicitly relate the fundamental series expansion solutions around the three regular
singularities of the hypergeometric differential equation. These formulas turn out to be di-
rectly related to well known three term transformation formulas for the Gauss’ hypergeomet-
ric function 2F1. From the above notion of monodromy only its incarnation in terms of con-
nection coefficient formulas generalizes to the difference setup (see Sauloy [21] and references
therein for a detailed discussion of this issue). We therefore say that the explicit connection
coefficient formula (2.8) solves the quantum monodromy problem of D. In addition we say that
the quantum monodromy is trivial if the coefficient of Φ(x, z) in (2.8) vanishes. The latter
terminology is motivated as follows. Firstly, for trivial quantum monodromy the connection
coefficient formula (2.8) reduces to a simple equivariance property of the following renormaliza-
tion Φ̃(x, z) = Φ̃(x, z;κ, λ, υ, ς; q, s) of the asymptotically free eigenfunction Φ(x, z),
Φ̃(x, z) := c(x, z)Φ(x, z),
see Proposition 3.1(iii) below. Secondly, for an important subclass with trivial quantum mon-
odromy, a suitable renormalization of the asymptotically free eigenfunction Φ(x, z) has a termi-
nating series expansion, see Remark 3.2(i) for further discussions on this issue.
Note that the renormalization Φ̃(x, z) of Φ(x, z) still satisfies the eigenvalue equation
D
(
Φ̃(·, z)
)
=
(
qz + q−z − ã− ã−1
)
Φ̃(·, z)
since c(x, z) is s-translation invariant in x. Write Φ̃d(z, x) := Φ̃(z, x;κ, υ, λ, ς; q, s).
Proposition 3.1.
(i) If κ
s ,
λ
s ,
υ
s ,
ς
s ∈
1
2Z with an even number of them being integers, then c(x, z) = cd(z, x).
In the remaining items of the proposition we assume that (κ, λ, υ, ς) is a four-tuple of real
parameters such that c(x, z) = cd(z, x).
(ii) Φ̃(x, z) = Φ̃d(z, x) (selfduality).
(iii) Φ̃(−x, z) = Φ̃(x,−z).
(iv) E(x, z) = Φ̃(x, z) + Φ̃(−x, z).
Proof. (i) Consider the quotient α := c(x, z)/cd(z, x) (we suppress the dependence on the
variables and parameters). Using the explicit expression of the normalized c-function (2.6) in
terms of theta functions it follows that α = 1 if
(
κ
s ,
λ
s ,
υ
s ,
ς
s) is taken from the set{(
0, 0, 0, 0
)
,
(
1
2
,
1
2
, 0, 0
)
,
(
1
2
, 0,
1
2
, 0
)
,
(
1
2
, 0, 0,
1
2
)
,(
0,
1
2
,
1
2
, 0
)
,
(
0,
1
2
, 0,
1
2
)
,
(
0, 0,
1
2
,
1
2
)
,
(
1
2
,
1
2
,
1
2
,
1
2
)}
.
Some Remarks on Very-Well-Poised 8φ7 Series 9
In addition, it is easy to check that α is invariant under integral shifts of the rescaled Hecke
parameters κ
s , λ
s , υ
s , ς
s . This gives the result.
(ii) This follows from Proposition 2.4(iii).
(iii) This follows from the connection formula (2.8) for Φ(x, z).
(iv) This is immediate from the c-function expansion of the Askey–Wilson function, see
Proposition 2.4(iv). �
Remark 3.2.
(i) Due to [13, § 4] the function Φ̃(x, z) for Hecke parameters (κ, λ, υ, ς) satisfying, besides
the integrality conditions from Proposition 3.1(i), suitable additional (positivity) condi-
tions, is up to normalization Chalykh’s BC1 type normalized Baker–Akhiezer function [4,
§ 6]. An important property of the Baker–Akhiezer function is the fact that it has a ter-
minating series expansion. Surprisingly this is not evident from the explicit expressions
of Φ̃(x, z) in terms of basic hypergeometric series. The properties from Proposition 3.1
can be easily matched with the properties (see [4, 5]) of the Baker–Akhiezer functions.
For instance, the Askey–Wilson function E(x, z) relates to the symmetrized normalized
Baker–Akhiezer function Φ+ from [5, (3.20)]. In particular, formula [5, Theorem 3.9] re-
lating the symmetrized Baker–Akhiezer function to Askey–Wilson polynomials matches
with the known fact that the Askey–Wilson function E(x, z) reduces to the normalized
Askey–Wilson polynomial for suitable discrete values of z, see (6.2) below.
(ii) The relation between the A1 type Baker–Akhiezer function (see [4, § 4.1]) and Heine’s
basic hypergeometric series 2φ1 was stressed in an informal note of Koornwinder [12].
4 The factorization of the Askey–Wilson
second order difference operator
Ruijsenaars [20] analyzed when the square
(
D + ã + ã−1
)2
is an Askey–Wilson second order
difference operator again (with doubled step-size). An important special case turns out to be
when the Hecke parameters are of the form (κ, λ, 0, 0). In our notations the resulting formula
[20, (3.11)] reads as
(
D(s/2)
κ,λ,0,0;q − q
z
2 − q−
z
2 + qκ + q−κ
)(
D(s/2)
κ,λ,0,0;q + q
z
2 + q−
z
2 + qκ + q−κ
)
= D(s)
κ,λ,κ,λ;q − q
z − q−z + q2κ + q−2κ. (4.1)
Remark 4.1. Our operator D + ã + ã−1 = D + q2κ + q−2κ for arbitrary Hecke parameters
(κ, λ, υ, ς) is essentially the second order difference operator Aδ(c; ·) in Ruijsenaars’ paper [20,
(2.1)] with the parameters (c0, c1, c2, c3) in [20] related to our Hecke parameters by κ + λ =
−
√
−1c0, κ− λ = −
√
−1c1, υ + ς = −
√
−1c2 and υ − ς = −
√
−1c3.
A simple derivation of (4.1) is as follows. Consider the second order difference operator
L = L(s/2)κ,λ;q defined by
(
Lf
)
(x) :=
(1− qκ+λ+x)(1 + qκ−λ+x)
qκ(1− q2x)
f
(
x+
s
2
)
+
(1− qκ+λ−x)(1 + qκ−λ−x)
qκ(1− q−2x)
f
(
x− s
2
)
.
10 J.V. Stokman
Then ((
L(s/2)κ,λ,q − q
κ − q−κ
)
f
)
(x) =
(1− qκ+λ+x)(1 + qκ−λ+x)
qκ(1− q2x)
(
f
(
x+
s
2
)
− f(x)
)
+
(1− qκ+λ−x)(1 + qκ−λ−x)
qκ(1− q−2x)
(
f
(
x− s
2
)
− f(x)
)
=
(
D(s/2)
κ,λ,0,0;qf
)
(x).
Formula (4.1) thus is equivalent to(
L(s/2)κ,λ;q − q
z
2 − q−
z
2
)(
L(s/2)κ,λ;q + q
z
2 + q−
z
2
)
= D(s)
κ,λ,κ,λ;q − q
z − q−z + q2κ + q−2κ, (4.2)
which is an easy check (use that the Askey–Wilson parameters associated to Hecke parameters
(κ, λ, κ, λ) satisfy cs = q
s
2as = q
s
2
+κ+λ and ds = q
s
2 bs = −q
s
2
+κ−λ).
The eigenfunctions of Dx of the form pn(qx + q−x) (n ∈ Z≥0) with pn a polynomial of
degree n, are the well known Askey–Wilson polynomials [1] (see also Section 6). In the special
case that the associated four Hecke parameters are taken to be (κ, λ, κ, λ) (corresponding to the
condition that the Askey–Wilson parameters satisfy cs = q
s
2as and ds = q
s
2 bs) the Askey–Wilson
polynomials are called the continuous q-Jacobi polynomials by Askey and Wilson [1, § 4]. In
[1, (4.22)] a quadratic transformation formula for balanced 4φ3 series, going back to Singh [22],
is used to relate the above continuous q-Jacobi polynomials to Rahman’s definition [17] of the
continuous q-Jacobi polynomials (see also Section 6).
Ruijsenaars [20] used the factorization (4.1) to motivate and analyze quadratic transforma-
tion formulas for the hyperbolic nonpolynomial generalization of the continuous q-Jacobi poly-
nomial, which is Ruijsenaars’ R-function with the continuous q-Jacobi specialization (κ, λ, κ, λ)
of the associated Hecke algebra parameters (see Remark 4.1 for the relation with Ruijsenaars’
notations [20]). In the following section we use the factorization (4.1) to prove quadratic trans-
formation formulas for the asymptotically free eigenfunction Φ(·, z;κ, λ, κ, λ; q, s).
5 Quadratic transformation formulas
For a function Ξ(x, z;κ, λ, υ, ς; q, s) we write
ΞR(x, z) := Ξ
(
x,
z
2
;κ, λ, 0, 0; q,
s
2
)
.
This is the parameter specialization which reduces the Askey–Wilson polynomials to Rahman’s
version of the continuous q-Jacobi polynomials [17] (in base q
s
2 ). Furthermore we set ΞdR(x, z) :=
Ξ(x, z2 ;κ, 0, λ, 0; q, s2) for its dual version. Since
L(s/2)κ,λ,q = D(s/2)
κ,λ,0,0;q + qκ + q−κ,
we know from the previous section that the meromorphic function ΦR(x, z) satisfies(
Lx − q
z
2 − q−
z
2
)
ΦR(·, z) = 0. (5.1)
In fact, ΦR(x, z) is the unique solution to (5.1) which is of the form
ΦR(x, z) =
WR(x, z)
StR(x)StdR(z)
∞∑
r=0
ΓR,r(z)q
rx
with ΓR,r(z) holomorphic in z ∈ C, with ΓR,0(z) =
(
q
s
2
+z; q
s
2
)
∞ and with the power series
ΨR(x, z) :=
∞∑
r=0
ΓR,r(z)q
rx converging normally on compacta of (x, z) ∈ C× C.
Some Remarks on Very-Well-Poised 8φ7 Series 11
For a function Ξ(x, z;κ, λ, υ, ς; q, s) we write
ΞJ(x, z) := Ξ(x, z;κ, λ, κ, λ; q, s).
This is the parameter specialization which reduces the Askey–Wilson polynomials to Askey’s
and Wilson’s version of the continuous q-Jacobi polynomials [1, § 4]. In addition we write
ΞdJ(x, z) := Ξ(x, z;κ, κ, λ, λ; q, s) for its dual version.
Theorem 5.1. ΦJ(x, z) = ΦR(x, z).
Proof. First of all note that the Askey–Wilson parameters associated to the Hecke parameters
(κ, λ, 0, 0), deformation parameter q and step-size s
2 are given by(
qκ+λ,−qκ−λ, q
s
4 ,−q
s
4
)
.
The expression of Ψ(x, z) as a sum of two 4φ3’s, see (2.5), shows that(
−q
s
4
+x; q
s
2
)−1
∞ ΨR(x, z)
is holomorphic in (x, z) ∈ C× C. By Remark 2.3 also(
q
s
4
+x,−q
s
4
+x; q
s
2
)−1
∞ ΨR(x, z) =
(
q
s
2
+2x; qs
)−1
∞ ΨR(x, z)
is holomorphic in (x, z) ∈ C× C. We write its power series expansion in qx as
(
q
s
2
+2x; qs
)−1
∞ ΨR(x, z) =
∞∑
r=0
H̃r(z)q
rx.
The H̃r(z) are holomorphic in z ∈ C, the series converges normally on compacta of (x, z) ∈ C×C,
and H̃0(z) =
(
q
s
2
+z; q
s
2
)
∞. Define new holomorphic functions by
Hr(z) :=
(
−q
s
2
+z; q
s
2
)
∞H̃r(z)
for r ∈ Z≥0. Then H0(z) =
(
qs+2z; qs
)
∞ and
ΦR(x, z) =
WR(x, z)
(
q
s
2
+2x; qs
)
∞
StR(x)StdR(z)
(
−q
s
2
+z; q
s
2
)
∞
∞∑
r=0
Hr(z)q
rx
with the series converging normally on compacta of (x, z) ∈ C× C. A direct computation now
shows that
ΦR(x, z) =
WJ(x, z)
StJ(x)StdJ(z)
∞∑
r=0
Hr(z)q
rx.
By (5.1) and (4.2) we furthermore have(
D(s)
κ,λ,κ,λ;q − q
z − q−z + q2κ + q−2κ
)
ΦR(·, z) = 0.
Hence ΦR(x, z) satisfies the characterizing properties of ΦJ(x, z). �
By the proof of the theorem we in particular have
ΨR(x, z) =
(
q
s
2
+2x; qs
)
∞(
−q
s
2
+z; q
s
2
)
∞
ΨJ(x, z).
Substituting the explicit expressions of ΨR and ΨJ in this formula gives the following quadratic
transformation formula for very-well-poised 8φ7 series.
12 J.V. Stokman
Corollary 5.2.
(
qβxz,− qxz
β , q
3
2 xz
α ,−q
1
2αxz; q
)
∞(
q
1
2x,−q
3
2xz2, q
2βxz2
α ; q
)
∞
8W7
(
−q
1
2xz2;
qz
α
,−q
1
2 z
β
,−αz, q
1
2βz,−q
1
2x; q,−q
1
2x
)
=
(
− q2xz2
αβ ,−qαβxz2,− qαx
β ; q2
)
∞(
− q3βxz4
α ; q2
)
∞
× 8W7
(
−qβxz
4
α
;
q2z2
α2
,−qz2,−z2, qβ2z2,−qβx
α
; q2,−qαx
β
)
(5.2)
if both |q
1
2x| < 1 and | qαxβ | < 1.
Remark 5.3.
(i) As observed by Mizan Rahman (private communication), the quadratic transformation
formula (5.2) for 8W7 is equivalent to the quadratic transformation formula [6, (3.5.10)]
by applying to the left hand side of (5.2) the transformation formula [6, (III.23)] with
parameters (a, b, c, d, e, f) in [6, (III.23)] specialized to
(
−q
1
2xz2,−q
1
2 z
β
,−αz,−q
1
2x,
qz
α
, q
1
2βz
)
and to the right hand side of (5.2) the transformation formula [6, (III.23)] with parameters
(a, b, c, d, e, f, q) in [6, (III.23)] specialized to
(
−qβxz
4
α
,−qz2,−z2, qβ2z2, q
2z2
α2
,−qβx
α
, q2
)
.
(ii) The formal classical limit q ↑ 1 of (5.2) can be computed after replacing the parameters
(x, z, α, β) in (5.2) by (−x, qz, qα, qβ) and moving all the infinite q-shifted factorials in (5.2)
to one side. The resulting classical limit turns out to be trivial, since both sides reduce to
2F1
(
1 + 2z − 2α, 12 + 2z + 2β
1 + 4z
;
4x
(1 + x)2
)
,
where 2F1 is Gauss’ hypergeometric series (in contrast to the classical limits of the quadra-
tic transformations of very-well-poised 8φ7’s from [18, § 5], which reduce to nontriv-
ial quadratic transformations for 2F1). On the polynomial level (5.2) reduces to the
quadratic transformation formula for the continuous q-Jacobi polynomials, see Section 6,
which is known to reduce to nontrivial quadratic transformations (see [1, (4.24)]) on the
classical level when taking the limit q ↑ 1 after replacing the parameters (x, z, α, β) by
(−qx, qz, qα, qβ).
There is a dual version of (5.2), which can be obtained by using the selfduality of Φ(x, z) to
both sides of the quadratic transformation formula ΦJ(x, z) = ΦR(x, z) before substituting the
explicit expression as a 8W7 series. It leads to the following quadratic transformation formula.
Some Remarks on Very-Well-Poised 8φ7 Series 13
Corollary 5.4.
(
−q
1
2αxz,−q
1
2βz, q
3
2 xz
α ; q
)
∞(
− q
3
2 x2z
β ; q
)
∞
8W7
(
−q
1
2x2z
β
;
qx
αβ
,−q
1
2x,−αx
β
, q
1
2x,−q
1
2 z
β
; q,−q
1
2βz
)
=
(
−qαβxz2, q
2αxz2
β ,− q2xz2
αβ , q
3βxz2
α ; q2
)
∞(
−q3x2z2,−q2z2, q2x2z2
β2 ; q2
)
∞
× 8W7
(
−qx2z2; q
2x
αβ
,−qβx
α
,−αx
β
, qαβx,−qβz
2
α
; q2,−qx
)
. (5.3)
Also (5.3) can be related to [6, (3.5.10)] by applying the transformation formula [6, (III.23)]
to both sides, cf. Remark 5.3(i).
6 Polynomial reduction
Both the asymptotically free eigenfunctions Φ(x, z) of the Askey–Wilson second order difference
operator, and the Askey–Wilson function E(x, z), reduce to the Askey–Wilson polynomials
when z is specialized appropriately (see, e.g., [10, 25]). Concretely, for Φ(x, z) we have for
n ∈ Z≥0,
Φ(x,−κ− υ − ns) =
a−2ns
(
asbs, ascs, asds; q
s
)
n
( q2(1−n)s
asbscsds
; qs
)
∞(
q(n−1)sasbscsds; qs
)
n
Std(−κ− υ − ns)
Pn(x) (6.1)
with Pn(x) = Pn(x;κ, λ, υ, ς; q, s) the normalized Askey–Wilson polynomial in qx + q−x of deg-
ree n,
Pn(x) := 4φ3
(
q−ns, q(n−1)sasbscsds, asq
x, asq
−x
asbs, ascs, asds
; qs, qs
)
.
This can be proved directly from the expression of Φ(x,−κ − υ − ns) as a very-well-poised
8W7 series (see Proposition 2.2) by first applying Watson’s transformation [6, (III.17)] with
parameters (a, b, c, d, e, f, q) in [6, (III.17)] specialized to(
q2(1−n)s+x
asbscsd2s
,
qs+x
ds
,
q(2−n)s
asbscsds
,
q(1−n)s
asds
,
q(1−n)s
bsds
,
q(1−n)s
csds
, qs
)
,
followed by Sear’s transformation [6, (III.16)] with parameters (a, b, c, d, e, f, q) in [6, (III.16)]
specialized to(
q(1−n)s
asds
,
q(1−n)s
bsds
,
q(1−n)s
csds
,
q2(1−n)s
asbscsds
,
q(1−n)s+x
ds
,
q(1−n)s−x
ds
, qs
)
.
Formula (6.1) can also be proved by observing that Pn(x) is an eigenfunction of Dx with eigen-
value ã(qn + 1) + ã−1(q−n + 1) (see [1]) of the form
Pn(x) =
(
q−ns, q(n−1)sasbscsds; q
s
)
n
(−as)nq
s
2
n(n+1)(
asbs, ascs, asds; qs
)
n
qnx +
∑
m<n
cmq
mx,
14 J.V. Stokman
hence up to a multiplicative constant it must be equal to Φ(x,−κ − υ − ns) (this argument
generalizes to the setting of Macdonald–Koornwinder polynomials, see [13, 25]). Also the Askey–
Wilson function E(x,−κ− υ − ns) (n ∈ Z≥0) is a multiple of the Askey–Wilson polynomial,
E(x,−κ− υ − ns) =
(
asbs, ascs; q
s
)
∞( qs
asds
; qs
)
∞
Pn(x). (6.2)
This can again be proved directly using transformation formulas and the expression of E(x, z)
as a 8W7 series, see [10]. It can also be proved using the c-function expansion of E(x, z) (see
Proposition 2.4(iv)) and (6.1), since c(x;κ+ υ + ns) = 0 for n ∈ Z≥0.
Specializing now z = −2κ−ns (n ∈ Z≥0) in the identity ΦJ(x, z) = ΦR(x, z) and using (6.1)
twice gives, after straightforward simplifications, the following result (we take s = 2 without
loss of generality),
4φ3
(
q−2n, aqx, aq−x, q2na2b2
ab, qa2, qab
; q2, q2
)
= 4φ3
(
q−n, aqx, aq−x,−qnab
ab, q
1
2a,−q
1
2a
; q, q
)
for n ∈ Z+. This quadratic transformation formula was first proved by Singh [22]. It was
reobtained by Askey and Wilson [1, (4.22)] and interpreted as quadratic transformation formula
[1, (4.22)] for the continuous q-Jacobi polynomial (to get it in the same form one has to apply
Sear’s transformation formula [6, (III.15)]), see also [6, § 3.10] for further discussions. It was also
obtained in [20, (3.20)] (−a2q in [20, (3.20)] should be −abq) by specialization of the quadratic
transformation formula [20, (3.16)] for the R-function. A similar polynomial reduction can be
done with the dual version (5.3) of the quadratic transformation formula, in which case it reduces
to the quadratic transformation formula [1, (3.1)].
7 A theta function identity
By the c-function expansion of the Askey–Wilson function (see Proposition 2.4(iv)) and by
Theorem 5.1 we have
EJ(x, z) = cJ(x, z)ΦJ(x, z) + cJ(x,−z)ΦJ(x,−z)
= cJ(x, z)ΦR(x, z) + cJ(x,−z)ΦR(x,−z)
while on the other hand,
ER(x, z) = cR(x, z)ΦR(x, z) + cR(x,−z)ΦR(x,−z).
The c-functions cJ(x, z) and cR(x, z) are explicitly given by
cJ(x, z) =
θ
(
q2κ−z,−q−z, q
s
2
+2λ−z,−q
s
2
−κ−λ+x−z; qs
)
WJ(x, z)θ
(
q−2z,−q
s
2
+κ−λ+x; qs
) ,
cR(x, z) =
θ
(
q2κ−z; qs
)
θ
(
q
s
4
+λ− z
2 ,−q
s
4
−κ+x− z
2 ; q
s
2
)
WR(x, z)θ
(
q−z,−q
s
4
+x; q
s
2
) . (7.1)
Note that WJ(x, z) = q(κ+λ+x)(2κ+z)/s = WR(x, z) and that
cJ(x, z)
cR(x, z)
=
θ
(
−q
s
2
−κ−λ+x−z; qs
)
θ
(
−q
s
4
+λ− z
2 ,−q
3
4
+x; q
s
2
)
θ
(
−q
s
2
−z,−q
s
2
+κ−λ+x; qs
)
θ
(
−q
s
4
−κ+x− z
2 ; q
s
2
)
is not invariant under z → −z for generic Hecke parameters, since it is zero at z = 2λ +
s
2 + 2π
√
−1τ but nonzero at z = −2λ − s
2 − 2π
√
−1τ . Hence EJ(x, z) cannot be of the form
α(x, z)ER(x, z) with α(x, z) meromorphic and s-invariant in the variable x.
Some Remarks on Very-Well-Poised 8φ7 Series 15
Remark 7.1. Both EJ(·, z) and ER(·, z) are eigenfunctions of D(s)
κ,λ,κ,λ;q with eigenvalue qz +
q−z − q2κ − q−2κ (for ER(·, z) this follows from (4.1) and the fact that cR(·, z) is s
2 -translation
invariant). On the other hand, ER(·, z) is an eigenfunction of L(s/2)κ,λ,q with eigenvalue q
z
2 + q−
z
2 ,
but this is not true for EJ(·, z) since cJ(·, z) is not s
2 -translation invariant.
Remark 7.2. Ruijsenaars’ R-function R(·, z) [20] is a hyperbolic eigenfunction of the Askey–
Wilson second order difference operator (implying in particular that it admits an analytic con-
tinuation to the regime |q| = 1) satisfying R(−x, z) = R(x, z). For the R-function R a quadratic
transformation formula of the form RJ(x, z) = RR(x, z) holds true, see [20, (3.16)]. The dis-
crepancy with the fact that EJ(x, z) 6= ER(x, z) is not unexpected since the R-function R in
the trigonometric regime |q| < 1 has a nontrivial factorization in Askey–Wilson functions: it
expands as a sum of two terms, each term being essentially the product of two Askey–Wilson
functions, see [3, Theorem 6.5].
The quadratic transformation formula ΦJ(x, z) = ΦR(x, z) implies the following result for
the connection coefficients in (2.8).
Proposition 7.3. We have
cJ(x,−z)
cdJ(z,−x)
=
cR(x,−z)
cdR( z2 ,−2x)
,
cJ(x, z)− cdJ(z, x)
cdJ(z,−x)
=
cR(x, z)− cdR( z2 , 2x)
cdR( z2 ,−2x)
. (7.2)
Proof. Using (2.8) and Theorem 5.1 we have(
cJ(x, z)− cdJ(z, x)
cdJ(z,−x)
)
ΦJ(x, z) +
cJ(x,−z)
cdJ(z,−x)
ΦJ(x,−z)
=
(
cR(x, z)− cdR( z2 , 2x)
cdR( z2 ,−2x)
)
ΦJ(x, z) +
cR(x,−z)
cdR( z2 ,−2x)
ΦJ(x,−z), (7.3)
since both sides are equal to ΦJ(−x, z) = ΦR(−x, z). By a straightforward asymptotic argument
(compare with the proof of Corollary 2.8) it follows that the coefficients of ΦJ(x, z) (resp.
of ΦJ(x,−z)) on both sides of this equation should be the same.
Alternatively, one verifies by a direct computation that
cJ(x,−z)
cdJ(z,−x)
= q−
4κx
s q
2(κ+λ)z
s
θ
(
q2x, q
s
2
+2λ+z, q2κ+z; qs
)
θ
(
qz, qκ+λ+x,−qκ−λ+x; q
s
2
) =
cR(x,−z)
cdR( z2 ,−2x)
,
yielding the first equality of (7.2). Combined with (7.3) this implies the second equality
of (7.2). �
Since c(x, z) is s-translation invariant in both x and z, it follows from the right hand sides
of (7.2) that the quotients
cJ(x,−z)
cdJ(z,−x)
,
cJ(x, z)− cdJ(z, x)
cdJ(z,−x)
are s
2 -translation invariant in x (although cJ(x, z) is not, cf. Remark 7.1).
Using (7.1) and using the explicit expressions
cdJ(z, x) =
θ
(
qκ+λ−x,−qκ−λ−x, q
s
2
+κ+λ−x,−q
s
2
−κ−λ+z−x; qs
)
W d
J (z, x)θ
(
q−2x,−q
s
2
+z; qs
) ,
cdR(z, x) =
θ
(
qκ+λ−
x
2 ,−qκ−λ−
x
2 , q
s
4
−x
2 ,−q
s
4
−κ+z−x
2 ; q
s
2
)
W d
R(z, x)θ
(
q−x,−q
s
4
+λ+z; q
s
2
)
16 J.V. Stokman
with W d
J (z, x) = q(κ+λ+x)(2κ+z)/s and W d
R(z, x) = q2(κ+z)(κ+λ+
x
2
)/s, we have explicitly,
cJ(x, z)− cdJ(z, x)
cdJ(z,−x)
= q−2x(2κ+z)/s
θ
(
q2x; qs
)
θ
(
qκ+λ+x,−qκ−λ+x, q
s
2
+κ+λ+x,−q
s
2
−κ−λ+x+z; qs
)
×
{
θ
(
q2κ−z,−q−z, q
s
2
+2λ−z,−q
s
2
−κ−λ+x−z,−q
s
2
+z; qs
)
θ
(
q−2z,−q
s
2
+κ−λ+x; qs
)
−
θ
(
qκ+λ−x,−qκ−λ−x, q
s
2
+κ+λ−x,−q
s
2
−κ−λ−x+z; qs
)
θ
(
q−2x; qs
) }
and
cR(x, z)− cdR( z2 , 2x)
cdR( z2 ,−2x)
= q−2x(2κ+z)/s
θ
(
q2x; q
s
2
)
θ
(
qκ+λ+x,−qκ−λ+x, q
s
4
+x,−q
s
4
−κ+x+ z
2 ; q
s
2
)
×
{
θ
(
q2κ−z; qs
)
θ
(
q
s
4
+λ− z
2 ,−q
s
4
−κ+x− z
2 ,−q
s
4
+λ+ z
2 ; q
s
2
)
θ
(
q−z,−q
s
4
+x; q
s
2
)
−
θ
(
qκ+λ−x,−qκ−λ−x, q
s
4
−x,−q
s
4
−κ−x+ z
2 ; q
s
2
)
θ
(
q−2x; q
s
2
) }
.
Hence (7.2) is equivalent to the following theta function identity.
Corollary 7.4.
θ
(
a2, b2c2,−b2, qb2d2,− qb
2
acd
,−qb2; q2
)
− θ
(
b4,− qc
ad
, acd,−ac
d
, qacd,− qa
b2cd
; q2
)
=
θ
(
−qab2cd; q2
)
θ
(
−b2; q
)
θ
(
qa2; q2
)
θ
(
−q
1
2abc; q
) {θ(bc,−bc, a2, q 1
2 bd,−q
1
2 b
ac
,−q
1
2d
b
; q
)
− θ
(
b2,−q
1
2a, acd,−ac
d
, q
1
2a,−q
1
2a
bc
; q
)}
. (7.4)
Acknowledgements
I thank Tom Koornwinder for drawing my attention to the quadratic transformation formula
for continuous q-Jacobi polynomials. I thank Mizan Rahman for pointing out to me how the
quadratic transformations (5.2) and (5.3) for very-well-poised 8φ7 series are related to the known
quadratic transformation formula [6, (3.5.10)] (see Remark 5.3(i)).
References
[1] Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials,
Mem. Amer. Math. Soc. 54 (1985), no. 319.
[2] van de Bult F.J., Ruijsenaars’ hypergeometric function and the modular double of Uq(sl2(C)), Adv. Math.
204 (2006), 539–571, math.QA/0501405.
[3] van de Bult F.J., Rains E.M., Stokman J.V., Properties of generalized univariate hypergeometric functions,
Comm. Math. Phys. 275 (2007), 37–95, math.CA/0607250.
[4] Chalykh O.A., Macdonald polynomials and algebraic integrability, Adv. Math. 166 (2002), 193–259,
math.QA/0212313.
[5] Chalykh O.A., Etingof P., Orthogonality relations and Cherednik identities for multivariable Baker–Akhiezer
functions, arXiv:1111.0515.
http://dx.doi.org/10.1016/j.aim.2005.05.023
http://arxiv.org/abs/math.QA/0501405
http://dx.doi.org/10.1007/s00220-007-0289-0
http://arxiv.org/abs/math.CA/0607250
http://dx.doi.org/10.1006/aima.2001.2033
http://arxiv.org/abs/math.QA/0212313
http://arxiv.org/abs/1111.0515
Some Remarks on Very-Well-Poised 8φ7 Series 17
[6] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications,
Vol. 96, 2nd ed., Cambridge University Press, Cambridge, 2004.
[7] Gupta D.P., Masson D.R., Contiguous relations, continued fractions and orthogonality, Trans. Amer. Math.
Soc. 350 (1998), 769–808, math.CA/9511218.
[8] Haine L., Iliev P., Askey–Wilson type functions with bound states, Ramanujan J. 11 (2006), 285–329,
math.QA/0203136.
[9] Ismail M.E.H., Rahman M., The associated Askey–Wilson polynomials, Trans. Amer. Math. Soc. 328 (1991),
201–237.
[10] Koelink E., Stokman J.V., The Askey–Wilson function transform, Int. Math. Res. Not. (2001), no. 22,
1203–1227, math.CA/0004053.
[11] Koelink E., Stokman J.V., Fourier transforms on the quantum SU(1, 1) group, Publ. Res. Inst. Math. Sci.
37 (2001), 621–715, math.QA/9911163.
[12] Koornwinder T., Comment on the paper “Macdonald polynomials and algebraic integrability” by O.A. Cha-
lykh, available at http://staff.science.uva.nl/~thk/art/comment/ChalykhComment.pdf.
[13] Letzter G., Stokman J.V., Macdonald difference operators and Harish-Chandra series, Proc. Lond. Math.
Soc. (3) 97 (2008), 60–96, math.QA/0701218.
[14] van Meer M., Bispectral quantum Knizhnik–Zamolodchikov equations for arbitrary root systems, Selecta
Math. (N.S.) 17 (2011), 183–221, arXiv:0912.3784.
[15] van Meer M., Stokman J., Double affine Hecke algebras and bispectral quantum Knizhnik–Zamolodchikov
equations, Int. Math. Res. Not. (2010), no. 6, 969–1040, arXiv:0812.1005.
[16] Noumi M., Stokman J.V., Askey–Wilson polynomials: an affine Hecke algebra approach, in Laredo Lectures
on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, Nova
Sci. Publ., Hauppauge, NY, 2004, 111–144, math.QA/0001033.
[17] Rahman M., The linearization of the product of continuous q-Jacobi polynomials, Canad. J. Math. 33
(1981), 961–987.
[18] Rahman M., Verma A., Quadratic transformation formulas for basic hypergeometric series, Trans. Amer.
Math. Soc. 335 (1993), 277–302.
[19] Ruijsenaars S.N.M., A generalized hypergeometric function satisfying four analytic difference equations of
Askey–Wilson type, Comm. Math. Phys. 206 (1999), 639–690.
[20] Ruijsenaars S.N.M., Quadratic transformations for a function that generalizes 2F1 and the Askey–Wilson
polynomials, Ramanujan J. 13 (2007), 339–364.
[21] Sauloy J., Systèmes aux q-différences singuliers réguliers: classification, matrice de connexion et mono-
dromie, Ann. Inst. Fourier (Grenoble) 50 (2000), 1021–1071.
[22] Singh V.N., The basic analogues of identities of the Cayley–Orr type, J. London Math. Soc. 34 (1959),
15–22.
[23] Slater L.J., A note on equivalent product theorems, Math. Gaz. 38 (1954), 127–128.
[24] Stokman J.V., An expansion formula for the Askey–Wilson function, J. Approx. Theory 114 (2002), 308–
342, math.CA/0105093.
[25] Stokman J.V., The c-function expansion of a basic hypergeometric function associated to root systems,
arXiv:1109.0613.
[26] Suslov S.K., Some orthogonal very-well-poised 8φ7-functions that generalize Askey–Wilson polynomials,
Ramanujan J. 5 (2001), 183–218, math.CA/9707213.
http://dx.doi.org/10.1017/CBO9780511526251
http://dx.doi.org/10.1090/S0002-9947-98-01879-0
http://dx.doi.org/10.1090/S0002-9947-98-01879-0
http://arxiv.org/abs/math.CA/9511218
http://dx.doi.org/10.1007/s11139-006-8478-6
http://arxiv.org/abs/math.QA/0203136
http://dx.doi.org/10.2307/2001881
http://dx.doi.org/10.1155/S1073792801000575
http://arxiv.org/abs/math.CA/0004053
http://dx.doi.org/10.2977/prims/1145477332
http://arxiv.org/abs/math.QA/9911163
http://staff.science.uva.nl/~thk/art/comment/ChalykhComment.pdf
http://dx.doi.org/10.1112/plms/pdm055
http://dx.doi.org/10.1112/plms/pdm055
http://arxiv.org/abs/math.QA/0701218
http://dx.doi.org/10.1007/s00029-010-0039-6
http://dx.doi.org/10.1007/s00029-010-0039-6
http://arxiv.org/abs/0912.3784
http://dx.doi.org/10.1093/imrn/rnp165
http://arxiv.org/abs/0812.1005
http://arxiv.org/abs/math.QA/0001033
http://dx.doi.org/10.4153/CJM-1981-076-8
http://dx.doi.org/10.2307/2154269
http://dx.doi.org/10.2307/2154269
http://dx.doi.org/10.1007/s002200050840
http://dx.doi.org/10.1007/s11139-006-0257-x
http://dx.doi.org/10.1112/jlms/s1-34.1.15
http://dx.doi.org/10.1006/jath.2001.3647
http://arxiv.org/abs/math.CA/0105093
http://arxiv.org/abs/1109.0613
http://dx.doi.org/10.1023/A:1011439924912
http://arxiv.org/abs/math.CA/9707213
1 Introduction
2 Eigenfunctions of the Askey-Wilson second order difference operator
3 The case of trivial quantum monodromy
4 The factorization of the Askey-Wilson second order difference operator
5 Quadratic transformation formulas
6 Polynomial reduction
7 A theta function identity
References
|