Discrete Fourier Analysis and Chebyshev Polynomials with G₂ Group

The discrete Fourier analysis on the 30°-60°-90° triangle is deduced from the corresponding results on the regular hexagon by considering functions invariant under the group G₂, which leads to the definition of four families generalized Chebyshev polynomials. The study of these polynomials leads to...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2012
Автори: Li, H., Sun, J., Xu, Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/148448
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Discrete Fourier Analysis and Chebyshev Polynomials with G₂ Group / H. Li, J. Sun, Y. Xu // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The discrete Fourier analysis on the 30°-60°-90° triangle is deduced from the corresponding results on the regular hexagon by considering functions invariant under the group G₂, which leads to the definition of four families generalized Chebyshev polynomials. The study of these polynomials leads to a Sturm-Liouville eigenvalue problem that contains two parameters, whose solutions are analogues of the Jacobi polynomials. Under a concept of m-degree and by introducing a new ordering among monomials, these polynomials are shown to share properties of the ordinary orthogonal polynomials. In particular, their common zeros generate cubature rules of Gauss type.
ISSN:1815-0659