A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction

A 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereb...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2012
Автори: An, H., Rogers, C.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/148449
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction / H. An, C. Rogers // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148449
record_format dspace
spelling An, H.
Rogers, C.
2019-02-18T12:44:36Z
2019-02-18T12:44:36Z
2012
A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction / H. An, C. Rogers // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 22 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 34A34; 35A25
DOI: http://dx.doi.org/10.3842/SIGMA.2012.057
https://nasplib.isofts.kiev.ua/handle/123456789/148449
A 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereby obtained which describe a rotating elliptic plasma cylinder. The semi-axes of the elliptical cross-section, remarkably, satisfy a Ermakov-Ray-Reid system.
This paper is a contribution to the Special Issue “Geometrical Methods in Mathematical Physics”. The full collection is available at http://www.emis.de/journals/SIGMA/GMMP2012.html.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
spellingShingle A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
An, H.
Rogers, C.
title_short A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
title_full A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
title_fullStr A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
title_full_unstemmed A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
title_sort 2+1-dimensional non-isothermal magnetogasdynamic system. hamiltonian-ermakov integrable reduction
author An, H.
Rogers, C.
author_facet An, H.
Rogers, C.
publishDate 2012
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description A 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereby obtained which describe a rotating elliptic plasma cylinder. The semi-axes of the elliptical cross-section, remarkably, satisfy a Ermakov-Ray-Reid system.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148449
fulltext
citation_txt A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction / H. An, C. Rogers // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 22 назв. — англ.
work_keys_str_mv AT anh a21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction
AT rogersc a21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction
AT anh 21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction
AT rogersc 21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction
first_indexed 2025-11-24T11:44:40Z
last_indexed 2025-11-24T11:44:40Z
_version_ 1850846096119562241