Recent Developments in (0,2) Mirror Symmetry

Mirror symmetry of the type II string has a beautiful generalization to the heterotic string. This generalization, known as (0,2) mirror symmetry, is a field still largely in its infancy. We describe recent developments including the ideas behind quantum sheaf cohomology, the mirror map for deformat...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2012
Автори: Melnikov, I., Sethi, S., Sharpe, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/148451
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Recent Developments in (0,2) Mirror Symmetry / I. Melnikov, S. Sethi, E. Sharpe // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 53 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-148451
record_format dspace
spelling Melnikov, I.
Sethi, S.
Sharpe, E.
2019-02-18T12:54:46Z
2019-02-18T12:54:46Z
2012
Recent Developments in (0,2) Mirror Symmetry / I. Melnikov, S. Sethi, E. Sharpe // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 53 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 32L10; 81T20; 14N35
DOI: http://dx.doi.org/10.3842/SIGMA.2012.068
https://nasplib.isofts.kiev.ua/handle/123456789/148451
Mirror symmetry of the type II string has a beautiful generalization to the heterotic string. This generalization, known as (0,2) mirror symmetry, is a field still largely in its infancy. We describe recent developments including the ideas behind quantum sheaf cohomology, the mirror map for deformations of (2,2) mirrors, the construction of mirror pairs from worldsheet duality, as well as an overview of some of the many open questions. The (0,2) mirrors of Hirzebruch surfaces are presented as a new example.
This paper is a contribution to the Special Issue “Mirror Symmetry and Related Topics”. The full collection is available at http://www.emis.de/journals/SIGMA/mirror symmetry.html. S.S. was supported in part by NSF Grant No. PHY-0758029 and NSF Grant No. 0529954. E.S. was supported in part by NSF grant PHY-1068725. I.M. and S.S. would like to thank the Simons Center for Geometry and Physics for hospitality during the completion of this work.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Recent Developments in (0,2) Mirror Symmetry
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Recent Developments in (0,2) Mirror Symmetry
spellingShingle Recent Developments in (0,2) Mirror Symmetry
Melnikov, I.
Sethi, S.
Sharpe, E.
title_short Recent Developments in (0,2) Mirror Symmetry
title_full Recent Developments in (0,2) Mirror Symmetry
title_fullStr Recent Developments in (0,2) Mirror Symmetry
title_full_unstemmed Recent Developments in (0,2) Mirror Symmetry
title_sort recent developments in (0,2) mirror symmetry
author Melnikov, I.
Sethi, S.
Sharpe, E.
author_facet Melnikov, I.
Sethi, S.
Sharpe, E.
publishDate 2012
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Mirror symmetry of the type II string has a beautiful generalization to the heterotic string. This generalization, known as (0,2) mirror symmetry, is a field still largely in its infancy. We describe recent developments including the ideas behind quantum sheaf cohomology, the mirror map for deformations of (2,2) mirrors, the construction of mirror pairs from worldsheet duality, as well as an overview of some of the many open questions. The (0,2) mirrors of Hirzebruch surfaces are presented as a new example.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/148451
citation_txt Recent Developments in (0,2) Mirror Symmetry / I. Melnikov, S. Sethi, E. Sharpe // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 53 назв. — англ.
work_keys_str_mv AT melnikovi recentdevelopmentsin02mirrorsymmetry
AT sethis recentdevelopmentsin02mirrorsymmetry
AT sharpee recentdevelopmentsin02mirrorsymmetry
first_indexed 2025-12-07T16:58:07Z
last_indexed 2025-12-07T16:58:07Z
_version_ 1850869481724706816