Recent Developments in (0,2) Mirror Symmetry
Mirror symmetry of the type II string has a beautiful generalization to the heterotic string. This generalization, known as (0,2) mirror symmetry, is a field still largely in its infancy. We describe recent developments including the ideas behind quantum sheaf cohomology, the mirror map for deformat...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2012 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2012
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/148451 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Recent Developments in (0,2) Mirror Symmetry / I. Melnikov, S. Sethi, E. Sharpe // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 53 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148451 |
|---|---|
| record_format |
dspace |
| spelling |
Melnikov, I. Sethi, S. Sharpe, E. 2019-02-18T12:54:46Z 2019-02-18T12:54:46Z 2012 Recent Developments in (0,2) Mirror Symmetry / I. Melnikov, S. Sethi, E. Sharpe // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 53 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 32L10; 81T20; 14N35 DOI: http://dx.doi.org/10.3842/SIGMA.2012.068 https://nasplib.isofts.kiev.ua/handle/123456789/148451 Mirror symmetry of the type II string has a beautiful generalization to the heterotic string. This generalization, known as (0,2) mirror symmetry, is a field still largely in its infancy. We describe recent developments including the ideas behind quantum sheaf cohomology, the mirror map for deformations of (2,2) mirrors, the construction of mirror pairs from worldsheet duality, as well as an overview of some of the many open questions. The (0,2) mirrors of Hirzebruch surfaces are presented as a new example. This paper is a contribution to the Special Issue “Mirror Symmetry and Related Topics”. The full collection is available at http://www.emis.de/journals/SIGMA/mirror symmetry.html. S.S. was supported in part by NSF Grant No. PHY-0758029 and NSF Grant No. 0529954. E.S. was supported in part by NSF grant PHY-1068725. I.M. and S.S. would like to thank the Simons Center for Geometry and Physics for hospitality during the completion of this work. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Recent Developments in (0,2) Mirror Symmetry Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Recent Developments in (0,2) Mirror Symmetry |
| spellingShingle |
Recent Developments in (0,2) Mirror Symmetry Melnikov, I. Sethi, S. Sharpe, E. |
| title_short |
Recent Developments in (0,2) Mirror Symmetry |
| title_full |
Recent Developments in (0,2) Mirror Symmetry |
| title_fullStr |
Recent Developments in (0,2) Mirror Symmetry |
| title_full_unstemmed |
Recent Developments in (0,2) Mirror Symmetry |
| title_sort |
recent developments in (0,2) mirror symmetry |
| author |
Melnikov, I. Sethi, S. Sharpe, E. |
| author_facet |
Melnikov, I. Sethi, S. Sharpe, E. |
| publishDate |
2012 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
Mirror symmetry of the type II string has a beautiful generalization to the heterotic string. This generalization, known as (0,2) mirror symmetry, is a field still largely in its infancy. We describe recent developments including the ideas behind quantum sheaf cohomology, the mirror map for deformations of (2,2) mirrors, the construction of mirror pairs from worldsheet duality, as well as an overview of some of the many open questions. The (0,2) mirrors of Hirzebruch surfaces are presented as a new example.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148451 |
| citation_txt |
Recent Developments in (0,2) Mirror Symmetry / I. Melnikov, S. Sethi, E. Sharpe // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 53 назв. — англ. |
| work_keys_str_mv |
AT melnikovi recentdevelopmentsin02mirrorsymmetry AT sethis recentdevelopmentsin02mirrorsymmetry AT sharpee recentdevelopmentsin02mirrorsymmetry |
| first_indexed |
2025-12-07T16:58:07Z |
| last_indexed |
2025-12-07T16:58:07Z |
| _version_ |
1850869481724706816 |