Commuting Differential Operators of Rank 3 Associated to a Curve of Genus 2
In this paper, we construct some examples of commuting differential operators L₁ and L₂ with rational coefficients of rank 3 corresponding to a curve of genus 2.
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2012 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2012
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/148457 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Commuting Differential Operators of Rank 3 Associated to a Curve of Genus 2 / D. Zuo // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 29 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148457 |
|---|---|
| record_format |
dspace |
| spelling |
Zuo, D. 2019-02-18T13:01:24Z 2019-02-18T13:01:24Z 2012 Commuting Differential Operators of Rank 3 Associated to a Curve of Genus 2 / D. Zuo // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 29 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 13N10; 14H45; 34L99; 37K20 DOI: http://dx.doi.org/10.3842/SIGMA.2012.044 https://nasplib.isofts.kiev.ua/handle/123456789/148457 In this paper, we construct some examples of commuting differential operators L₁ and L₂ with rational coefficients of rank 3 corresponding to a curve of genus 2. The author is grateful to Andrey E. Mironov for bringing the attention to this project and helpful discussions. The author also thanks referees’ suggestions and Alex Kasman for pointing some errors in the first version of this paper, Qing Chen and Youjin Zhang for their constant supports. This work is supported by “PCSIRT” and the Fundamental Research Funds for the Central Universities (WK0010000024) and NSFC (No. 10971209) and SRF for ROCS, SEM. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Commuting Differential Operators of Rank 3 Associated to a Curve of Genus 2 Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Commuting Differential Operators of Rank 3 Associated to a Curve of Genus 2 |
| spellingShingle |
Commuting Differential Operators of Rank 3 Associated to a Curve of Genus 2 Zuo, D. |
| title_short |
Commuting Differential Operators of Rank 3 Associated to a Curve of Genus 2 |
| title_full |
Commuting Differential Operators of Rank 3 Associated to a Curve of Genus 2 |
| title_fullStr |
Commuting Differential Operators of Rank 3 Associated to a Curve of Genus 2 |
| title_full_unstemmed |
Commuting Differential Operators of Rank 3 Associated to a Curve of Genus 2 |
| title_sort |
commuting differential operators of rank 3 associated to a curve of genus 2 |
| author |
Zuo, D. |
| author_facet |
Zuo, D. |
| publishDate |
2012 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
In this paper, we construct some examples of commuting differential operators L₁ and L₂ with rational coefficients of rank 3 corresponding to a curve of genus 2.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148457 |
| citation_txt |
Commuting Differential Operators of Rank 3 Associated to a Curve of Genus 2 / D. Zuo // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 29 назв. — англ. |
| work_keys_str_mv |
AT zuod commutingdifferentialoperatorsofrank3associatedtoacurveofgenus2 |
| first_indexed |
2025-11-30T19:03:38Z |
| last_indexed |
2025-11-30T19:03:38Z |
| _version_ |
1850858397439623168 |