Affine and Finite Lie Algebras and Integrable Toda Field Equations on Discrete Space-Time
Difference-difference systems are suggested corresponding to the Cartan matrices of any simple or affine Lie algebra. In the cases of the algebras AN, BN, CN, G₂, D₃, A₁⁽¹⁾, A₂⁽²⁾, DN⁽²⁾ these systems are proved to be integrable. For the systems corresponding to the algebras A₂, A₁⁽¹⁾, A₂⁽²⁾ genera...
Збережено в:
| Дата: | 2012 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2012
|
| Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/148464 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Affine and Finite Lie Algebras and Integrable Toda Field Equations on Discrete Space-Time / R. Garifullin, I. Habibullin, M. Yangubaeva // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 41 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148464 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1484642025-02-09T14:29:57Z Affine and Finite Lie Algebras and Integrable Toda Field Equations on Discrete Space-Time Garifullin, R. Habibullin, I. Yangubaeva, M. Difference-difference systems are suggested corresponding to the Cartan matrices of any simple or affine Lie algebra. In the cases of the algebras AN, BN, CN, G₂, D₃, A₁⁽¹⁾, A₂⁽²⁾, DN⁽²⁾ these systems are proved to be integrable. For the systems corresponding to the algebras A₂, A₁⁽¹⁾, A₂⁽²⁾ generalized symmetries are found. For the systems A₂, B₂, C₂, G₂, D₃ complete sets of independent integrals are found. The Lax representation for the difference-difference systems corresponding to AN, BN, CN, A₁⁽¹⁾,DN⁽²⁾ are presented. This paper is a contribution to the Special Issue “Geometrical Methods in Mathematical Physics”. The full collection is available at http://www.emis.de/journals/SIGMA/GMMP2012.html. The authors are grateful to the referees for their important contribution to improve the article. This work is partially supported by Russian Foundation for Basic Research (RFBR) grants 11-01-97005-r-povoljie-a, 12-01-31208-mol a and 10-01-00088-a and by Federal Task Program “Scientific and pedagogical staf f of innovative Russia for 2009–2013” contract no. 2012-1.5-12-000-1003-011. 2012 Article Affine and Finite Lie Algebras and Integrable Toda Field Equations on Discrete Space-Time / R. Garifullin, I. Habibullin, M. Yangubaeva // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 41 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35Q53; 37K40 DOI: http://dx.doi.org/10.3842/SIGMA.2012.062 https://nasplib.isofts.kiev.ua/handle/123456789/148464 en Symmetry, Integrability and Geometry: Methods and Applications application/pdf Інститут математики НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| description |
Difference-difference systems are suggested corresponding to the Cartan matrices of any simple or affine Lie algebra. In the cases of the algebras AN, BN, CN, G₂, D₃, A₁⁽¹⁾, A₂⁽²⁾, DN⁽²⁾ these systems are proved to be integrable. For the systems corresponding to the algebras A₂, A₁⁽¹⁾, A₂⁽²⁾ generalized symmetries are found. For the systems A₂, B₂, C₂, G₂, D₃ complete sets of independent integrals are found. The Lax representation for the difference-difference systems corresponding to AN, BN, CN, A₁⁽¹⁾,DN⁽²⁾ are presented. |
| format |
Article |
| author |
Garifullin, R. Habibullin, I. Yangubaeva, M. |
| spellingShingle |
Garifullin, R. Habibullin, I. Yangubaeva, M. Affine and Finite Lie Algebras and Integrable Toda Field Equations on Discrete Space-Time Symmetry, Integrability and Geometry: Methods and Applications |
| author_facet |
Garifullin, R. Habibullin, I. Yangubaeva, M. |
| author_sort |
Garifullin, R. |
| title |
Affine and Finite Lie Algebras and Integrable Toda Field Equations on Discrete Space-Time |
| title_short |
Affine and Finite Lie Algebras and Integrable Toda Field Equations on Discrete Space-Time |
| title_full |
Affine and Finite Lie Algebras and Integrable Toda Field Equations on Discrete Space-Time |
| title_fullStr |
Affine and Finite Lie Algebras and Integrable Toda Field Equations on Discrete Space-Time |
| title_full_unstemmed |
Affine and Finite Lie Algebras and Integrable Toda Field Equations on Discrete Space-Time |
| title_sort |
affine and finite lie algebras and integrable toda field equations on discrete space-time |
| publisher |
Інститут математики НАН України |
| publishDate |
2012 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148464 |
| citation_txt |
Affine and Finite Lie Algebras and Integrable Toda Field Equations on Discrete Space-Time / R. Garifullin, I. Habibullin, M. Yangubaeva // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 41 назв. — англ. |
| series |
Symmetry, Integrability and Geometry: Methods and Applications |
| work_keys_str_mv |
AT garifullinr affineandfiniteliealgebrasandintegrabletodafieldequationsondiscretespacetime AT habibullini affineandfiniteliealgebrasandintegrabletodafieldequationsondiscretespacetime AT yangubaevam affineandfiniteliealgebrasandintegrabletodafieldequationsondiscretespacetime |
| first_indexed |
2025-11-26T20:27:20Z |
| last_indexed |
2025-11-26T20:27:20Z |
| _version_ |
1849886081274609664 |
| fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 8 (2012), 062, 33 pages
Affine and Finite Lie Algebras and Integrable Toda
Field Equations on Discrete Space-Time?
Rustem GARIFULLIN †, Ismagil HABIBULLIN † and Marina YANGUBAEVA ‡
† Ufa Institute of Mathematics, Russian Academy of Science,
112 Chernyshevskii Str., Ufa, 450077, Russia
E-mail: grustem@gmail.com, habibullinismagil@gmail.com
‡ Faculty of Physics and Mathematics, Birsk State Social Pedagogical Academy,
10 Internationalnaya Str., Birsk, 452452, Russia
E-mail: marina.yangubaeva@mail.ru
Received April 24, 2012, in final form September 14, 2012; Published online September 18, 2012
http://dx.doi.org/10.3842/SIGMA.2012.062
Abstract. Difference-difference systems are suggested corresponding to the Cartan matri-
ces of any simple or affine Lie algebra. In the cases of the algebras AN , BN , CN , G2, D3,
A
(1)
1 , A
(2)
2 , D
(2)
N these systems are proved to be integrable. For the systems corresponding
to the algebras A2, A
(1)
1 , A
(2)
2 generalized symmetries are found. For the systems A2, B2,
C2, G2, D3 complete sets of independent integrals are found. The Lax representation for
the difference-difference systems corresponding to AN , BN , CN , A
(1)
1 , D
(2)
N are presented.
Key words: affine Lie algebra; difference-difference systems; S-integrability; Darboux in-
tegrability; Toda field theory; integral; symmetry; Lax pair
2010 Mathematics Subject Classification: 35Q53; 37K40
1 Introduction
Systems of partial differential equations of the form
rix,y = e
j=N∑
j=1
aijr
j
, i = 1, 2, . . . , N, (1.1)
called generalized two-dimensional Toda lattices have very important applications in Liouville
and conformal field theories, they are studied in details (see [3, 5, 6, 9, 10, 11, 13, 27, 28, 29,
30, 34, 36] and the references therein). Here the matrix A = {ai,j} is the Cartan matrix of
an arbitrary finite or affine Lie algebra. It is known that in the former case system (1.1) is
Darboux integrable while in the latter case – S-integrable. The widely known Drinfel’d–Sokolov
formalism allows one to construct the Lax representation for the system (1.1) in terms of the
Lie algebra canonically associated with the corresponding Cartan matrix A.
The problem of finding discrete versions of the system is intensively studied (see, for instance,
[2, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 38, 39, 40]). Recently, in [18] integrable differential-
difference analog of system (1.1) was suggested
vi1,x − vix = e
j=i−1∑
j=1
ai,jv
j+
j=N∑
j=i+1
ai,jv
j
1+
1
2
ai,i(v
i+vi1)
, i = 1, 2, . . . , N. (1.2)
Here the functions vj = vj(n, x), j = 1, . . . , N are the searched field variables. The subindex
denotes a shift of the discrete variable n or the derivative with respect to x: rjk = rj(n + k, x)
?This paper is a contribution to the Special Issue “Geometrical Methods in Mathematical Physics”. The full
collection is available at http://www.emis.de/journals/SIGMA/GMMP2012.html
mailto:grustem@gmail.com
mailto:habibullinismagil@gmail.com
mailto:marina.yangubaeva@mail.ru
http://dx.doi.org/10.3842/SIGMA.2012.062
http://www.emis.de/journals/SIGMA/GMMP2012.html
2 R. Garifullin, I. Habibullin and M. Yangubaeva
and rjx = ∂
∂xr
j(n, x). A particular case of (1.2), corresponding to the algebra CN is also studied
in [37].
In the present article we study the problem of further discretization of system (1.1), i.e.
the problem of finding a rule allowing to assign to any Cartan matrix a system of integrable
difference-difference equations approximating in the continuum limit system (1.2) and therefore
system (1.1). As it was pointed out in [40] the problem of discretization is important from
physical viewpoint, they might have applications in discrete field theory and in quantum physics
(see also [22, 25, 38]). They can also be regarded as difference schemes in numerical computations
(see [23]).
Following questions were addressed in [40]:
1) whether there exists an integrable discrete version for any two dimensional Toda field
equation (1.1);
2) which kind of algebraic structure (like Lie algebra or Lie group) is naturally related to
discrete versions.
The subject has intensively been studied during the last 10–15 years. Various discrete versions
of Toda field equations were investigated in literature (see [15, 22, 24, 25, 39] and references
therein). As an alternative answer to the first question we suggest a fully discrete version of
system (1.1) in the following form
e−u
i
1,1+u
i
1,0+u
i
0,1−ui0,0 − 1 = e
j=i−1∑
j=1
ai,ju
j
0,1+
j=N∑
j=i+1
ai,ju
j
1,0+
1
2
ai,i(u
i
0,1+u
i
1,0)
, i = 1, 2, . . . , N, (1.3)
which evidently approximates (1.1) and (1.2). Here uj = uj(n,m), j = 1, 2, . . . , N , is a set
of the field variables. The subindex indicates shifts of the arguments n, m as follows uji,k :=
uj(n+ i,m+ k). The system corresponding to the algebra AN coincides with that found years
ego by Hirota (see [21]). Obviously, system (1.3) is invariant under the replacement n ↔ −m.
This property is inherited from the fact that system (1.1) is invariant under the change x↔ y.
The main result of the present article is in formulating of the conjecture below and proving
it for numerous examples of Lie algebras.
Conjecture.
a) If A is the Cartan matrix of a semi-simple Lie algebra then (1.3) is Darboux integrable,
in other words, it admits a complete set of integrals in both directions. Roughly speaking
Darboux integrable difference-difference equations can be reduced to ordinary difference
equations.
b) If A is the Cartan matrix of an affine Lie algebra then (1.3) is S-integrable, i.e. it can be
integrated by means of the inverse scattering transform method. It is generally accepted
that existence of generalized symmetries or Lax pairs indicates S-integrability.
Part a) of the conjecture is proved for the cases: A2, B2, C2, G2, D3 by finding complete
sets of integrals. Systems corresponding to the algebras AN , BN , CN are studied by using Lax
pair in Section 6. In the cases A2, B2 (C2), G2 the exponential system (1.3) reads as follows
e−u
1
1,1+u
1
1,0+u
1
0,1−u10,0 − 1 = eu
1
0,1+u
1
1,0−u21,0 , e−u
2
1,1+u
2
1,0+u
2
0,1−u20,0 − 1 = e−cu
1
0,1+u
2
0,1+u
2
1,0 ,
where c takes only three values c = 1, 2, 3. Here the values c = 1, c = 2, c = 3 correspond
to the algebras A2, B2 or C2, G2 respectively. Let us introduce a notation for the nonlinear
second-order partial difference operator by setting
∆(u) := e−u1,1+u1,0+u0,1−u0,0 − 1,
Affine and Finite Lie Algebras and Integrable Toda Field Equations 3
then the last system takes a compact form
∆
(
u1
)
= eu
1
0,1+u
1
1,0−u21,0 , ∆
(
u2
)
= e−cu
1
0,1+u
2
0,1+u
2
1,0 . (1.4)
Integrals in both directions for system (1.4) are given in Section 2.
Since the map defined in (1.3) converts any N×N matrix to a system of difference-difference
equations one can easily specify the form of systems corresponding to any Cartan matrix canoni-
cally related to a finite or affine Lie algebra both of classical series or exceptional. For instance,
for the algebra D3 with the Cartan matrix
A =
2 −1 −1
−1 2 0
−1 0 2
,
we have an integrable system of the form
∆
(
u1
)
= eu
1
0,1+u
1
1,0−u21,0−u31,0 , ∆
(
u2
)
= e−u
1
0,1+u
2
0,1+u
2
1,0 , ∆
(
u3
)
= e−u
1
0,1+u
3
0,1+u
3
1,0 .
Complete sets of integrals for this system is given in Section 2.
For the Kac–Moody algebra A
(2)
2 with the Cartan matrix
A =
(
2 −1
−4 2
)
the corresponding system is
∆
(
u1
)
= eu
1
0,1+u
1
1,0−u21,0 , ∆
(
u2
)
= e−4u
1
0,1+u
2
0,1+u
2
1,0 . (1.5)
For the difference-difference systems corresponding to the algebras A2, A
(1)
1 , A
(2)
2 genera-
lized symmetries are found, for A2 the symmetries have usual form, for A
(1)
1 , A
(2)
2 they have
nonlocal form (or, they are of hyperbolic type, see Definition 1.5 below). In the literature
generalized symmetries are regarded as a criterion of integrability. Thus one concludes that
systems (1.5), (3.1) provide new examples of 2× 2 S-integrable quad graph models.
Stress that the number of the field variables in all three systems (1.1), (1.2), (1.3) coincides
with the rank of the corresponding Lie algebra.
It is known that any system of difference-difference equations of hyperbolic type admits
a pair of characteristic Lie algebras which are effectively evaluated (see [14]). Characteristic
Lie algebras of system (1.3) are closely connected with the Lie algebra canonically related to
the given Cartan matrix A. In our opinion this relation could allow one to answer the second
question in [40] (see the list of questions above).
The problem of developing discrete versions of the Drinfel’d–Sokolov formalism is also chal-
lenging since today systems of discrete equations are very popular. They have a large variety of
application in theoretical physics, in discrete geometry, in the theory of tau functions in lattice
Toda field equations. The present article would also provide an “experimental” background for
creating a discrete theory parallel to the Drinfel’d–Sokolov formalism.
The article is organized as follows. In Section 1.1 notions of the integrals and generalized
symmetries of both evolutionary and hyperbolic type for quad graph equations are defined.
Sufficient condition of complete set of integrals is proved. In Section 2 a method of discretization
of Darboux integrable models preserving integrability is discussed. The method is explained in
details by an example of the Liouville equation [19]. Then it is applied to the system (1.2) to
get its difference-difference analog. The case B2 is studied in more details. These simulations
allowed us to guess the formula (1.3). Complete sets of independent integrals for the systems
A2, B2, C2, G2, D3 are presented.
4 R. Garifullin, I. Habibullin and M. Yangubaeva
Generalized symmetries are evaluated for the systems corresponding A2, A
(1)
1 , A
(2)
2 in Sec-
tion 3. Special attention is paid to hyperbolic type symmetries which provide a semi-discrete
version of the consistency around a cube property of quad graph equations [1]. In Section 4
the concept of the characteristic Lie algebra (see [14]) of discrete models is briefly discussed.
Here a complete description of such algebra is obtained for the system of difference-difference
equations A2.
In Section 5 cutting off conditions for the Hirota equation preserving integrability are studied
by using the method suggested in [15]. It turned out that some of the systems in the class (1.3)
can be obtained from the Hirota equation by imposing proper boundary conditions. Since the
cutting off conditions are compatible with the Lax representation one can derive together with
the reduced discrete system also its Lax pair. In Section 5 the Lax pairs for the difference-
difference systems AN , BN , CN , A
(1)
1 , D
(2)
N are found.
In Section 6 an algorithm is suggested to look for integrals via the Lax pair. In Section 7 widely
known periodical reduction of the Hirota equation is discussed. The Lax pair for this system
found in [41] is rewritten in terms of the Cartan–Weyl basis for the algebra A
(1)
N . Emphasize
that the difference-difference system obtained as a periodical reduction and that given by the
formula (1.3) corresponding to A
(1)
N are not equivalent (see Remark 7.1 below).
1.1 Integrals and symmetries for quad graph systems
Consider a system of quad graph equations of general form
H(un,m,un+1,m,un,m+1,un+1,m+1) = 0, (1.6)
where u = un,m is a vector-function depending on two integers and ranging on CN : u =
(u1, u2, . . . , uN )T . As usually we request that equation (1.6) can be solved with respect to any
of the arguments un,m, un+1,m, un,m+1, un+1,m+1. In other words there exists a set of functions
H(±1,±1) such that
un+1,m+1 = H1,1(un,m,un+1,m,un,m+1),
un−1,m+1 = H(−1,1)(un−1,m,un,m,un,m+1),
un+1,m−1 = H(1,−1)(un+1,m,un,m,un,m−1),
un−1,m−1 = H(−1,−1)(un−1,m,un,m,un,m−1).
Define the following standard set of dynamical variables which consists of the variable un,m
and its shifts un+k,m and un,m+l where k, l ∈ Z
S = {un+k,m,un,m+l : k, l ∈ Z}.
By [u] we denote a finite set of dynamical variables, for instance notation h = h([u]) means that
function h depends on a finite number of dynamical variables. Define shift operators Dm, Dn
acting due to the rules
Dmf(n,m) = f(n,m+ 1), Dnf(n,m) = f(n+ 1,m).
Definition 1.1.
i) Function F ([u], n,m) (function I([u], n,m)) is called m-integral (respectively n-integral)
of the equation (1.6) if the following identity holds DmF = F (or, DnI = I) on arbitrary
solutions of equation (1.6).
Affine and Finite Lie Algebras and Integrable Toda Field Equations 5
ii) Integrals of the form F = F (n) (I = I(m)) are called trivial.
iii) Equation admitting N non-trivial independent integrals in each direction is called Darboux
integrable.
iv) Set of integrals is called independent if none of them can be expressed through the other
integrals and their shifts.
It can be easily proved that m-integrals do not depend on the variables un,m+l with l 6= 0
and similarly n-integrals do not depend on un+k,m where k 6= 0.
Now formulate a very simple and convenient sufficient condition of complete set of integrals.
Theorem 1.2. Let us given a set of m-integrals of the form
I(j) = I(j)
(
n,m,u, Dnu, D
2
nu, . . . , D
γj
n u
)
, γj ≥ 0, j = 1, . . . , N. (1.7)
Suppose that for any j and for all n, m at least one of the derivatives
∂I(j)
∂ui
differs from zero and
the condition
det
(
∂I(j)
∂ui
)
6= 0 (1.8)
holds for all n, m. Then the integrals constitute a complete set of integrals.
Proof. Suppose in contrary that the set of integrals (1.7) is not independent. Then at least
one of the integrals, say for definiteness I(1) is a function of the form
I(1) = Q
(
I(2), I(3), . . . , I(N), DnI(2), DnI(3), . . . , DnI(N), . . .
)
, (1.9)
depending on the other integrals and their shifts. Differentiating (1.9) with respect to ui we
obtain the following equalities
∂I(1)
∂ui
−
∂I(2)
∂ui
∂Q
∂I(2)
− · · · −
∂I(N)
∂ui
∂Q
∂I(N)
= 0.
The latter can be regarded as a linear algebraic system with the coefficient matrix {∂I(j)
∂ui
} and
a solution
(
1, ∂Q
∂I(2)
, . . . , ∂Q
∂I(N)
)
which obviously is not trivial. Therefore according to the well-
known theorem the determinant of the coefficient matrix should vanish. But it contradicts (1.8).
Thus our assumption that the set of integrals is dependent is not correct. Theorem is proved. �
Remark 1.3. Condition (1.8) actually means that jacobian of the map u→ I =
(
I(1), . . . , I(N)
)
differs from zero for any value of the variables u,Dnu,D2
nu, . . . ,Dγ
nu ranging in a domain. Here
γ = max{γj}. Note that (1.8) is not a necessary condition for independent integrals. In the
Example 6.1 we have a pair of independent integrals I(1) and I(2) for which condition (1.8) is
violated.
Definition 1.4. An equation of the form
d
dt
un,m = G([u])
is called generalized symmetry of (1.6) if the following compatibility condition is satisfied
d
dt
(
un+1,m+1 − F (1,1)
)∣∣
F=0,un,m,t=G
= 0.
6 R. Garifullin, I. Habibullin and M. Yangubaeva
It can be shown that function G([u]) is a solution of linearized equation
∂F
∂un+1,m+1
DnDmG+
∂F
∂un+1,m
DnG+
∂F
∂un,m+1
DmG+
∂F
∂un,m
G = 0.
There are systems of the form (1.6) which do not admit evolutionary type symmetries, how-
ever they admit symmetries of more complicated structure. We call them hyperbolic type
symmetries. Such type symmetries for (1.6) consist of two semi-discrete equations
d
dt
un+1,m = G
(
d
dt
un,m, [u]
)
,
d
dt
un,m+1 = G̃
(
d
dt
un,m, [u]
)
. (1.10)
Definition 1.5. Pair of equations (1.10) define a hyperbolic type symmetry for (1.6) if equa-
tions (1.6), (1.10) constitute a commuting triple, i.e. the following compatibility conditions are
satisfied
d
dt
F (1,1) = DmG = DnG̃
by means of equations (1.6), (1.10).
Hyperbolic type symmetries are constructed in Section 3. They are nothing else but non-local
symmetries (see, for instance, [35]) rewritten in a more convenient form. In the other hand side
existence of hyperbolic type symmetries (1.10) for equation (1.6) can be regarded as a semi-
discrete generalization of the well-known property of consistency around a cube [1, 4, 32] which
is approved to be a criterion of integrability.
2 Systematic approach to the problem of discretization
of the Darboux integrable systems
The problem of finding integrable discretizations of the integrable partial differential equation
is very complicated and not enough studied. The same is true for evaluating the continuum
limit for discrete models. In [19] an effective algorithm of discretization (as well as evaluation
of the continuum limit) of Darboux integrable equations is suggested based on the integrals. In
this section we discuss the essence of the algorithm and apply it to exponential type systems.
Note that sets of integrals for the systems corresponding to A2, B2, G2, D3 considered in this
section as easily proved by applying sufficient condition given in Theorem 1.2 are independent.
2.1 Explanation of the method with example of Liouville equation
Its well-known that the famous Liuoville equation uxy = eu admits integrals in both directions:
W = uxx − 0.5u2x and W̄ = uyy − 0.5u2y. Indeed, it is very easy to check that DyW = 0 and
DxW̄ = 0.
Consider now the problem of finding all chains of the form
tx(n+ 1, x) = f(x, t(n, x), t(n+ 1, x), tx(n, x)), (2.1)
having the function I = txx − 1
2 tx
2 as their n-integral. Equality DnI = I implies
fx + fttx + ft1f + ftxtxx −
1
2
f2 = txx −
1
2
tx
2. (2.2)
By comparing the coefficients before txx in (2.2) we have ftx = 1. Therefore,
f(x, t, t1, tx) = tx + d(x, t, t1). (2.3)
Affine and Finite Lie Algebras and Integrable Toda Field Equations 7
We substitute (2.3) into (2.2) and get dx + dttx + dt1tx + dt1d − 1
2 tx
2 − dtx − 1
2d
2 = −1
2 tx
2,
or equivalently, dt + dt1 − d = 0 and dx + dt1d − 1
2d
2 = 0. We solve the last two equations
simultaneously and find that d = Ce
1
2
(t1+t) and C is an arbitrary constant. Therefore, chain (2.1)
with n-integral I = txx− 1
2 tx
2 becomes t1x = tx+Ce(t1+t)/2. The last equation in its turn admits
also an x-integral F = e(t1−t)/2 + e(t1−t2)/2.
The next step consists in describing equations of the form
v(n+ 1,m+ 1) = f(v(n,m), v(n+ 1,m), v(n,m+ 1)) (2.4)
with m-integral F = ev1−v + ev1−v2 . Denote wij := e−vij . In the new variables F =
w0,0+w2,0
w1,0
is
an m-integral of equation w1,1 = g(w0,0, w1,0, w0,1). DmF = F implies
w2,0 + w0,0
w1,0
=
Dng + w0,1
g
. (2.5)
We differentiate both sides of (2.5) with respect to w2,0 and apply the shift operator D−1n , we
have
1
w1,0
=
∂w2,0Dng
g
⇒ D−1n
(
1
w1,0
)
= D−1n
(
∂w2,0Dng
g
)
⇒ gw1,0 =
w0,1
w0,0
.
Therefore,
g =
w0,1w1,0
w0,0
+ c(w0,0, w0,1). (2.6)
We substitute (2.6) into (2.5) and get
g
w0,0
w1,0
= c(w1,0, g) + w0,1. (2.7)
Substitution of (2.6) into (2.7) implies that c(w0,0, w0,1)w = c(w1,0, g)w1,0, or the same,
c(w0,0, w0,1)w = Dn(c(w0,0, w0,1)w0,0). Suppose that equation w1,1 = g(w,w1,0, w0,1) does not
admit an m-integral of the first order, then c(w0,0, w0,1)w0,0 = Dn(c(w0,0, w0,1)w0,0) = C =
const. Thus, c(w0,0, w0,1) = C/w0,0. Finally, g(w0,0, w1,0, w0,1) =
w0,1w1,0
w0,0
+ C
w0,0
. Therefore,
the equation (2.4) searched with m-integral F = ev1,0−v0,0 + ev1,0−v2,0 becomes e−v1,1−v0,0 =
C + e−v1,0−v0,1 , where C is an arbitrary constant. Note that this equation is symmetric with
respect to variables v1,0 and v0,1. Therefore, n-integral for the equation can be obtained by
simply changing in m-integral variables vj,0 into variables v0,j , j = 1, 2.
2.2 Application of the algorithm of discretization
to the system corresponding to the algebra B2
Apply the reasonings above to the system (1.1) corresponding to the algebra B2. The first step
has already been done in [18], where the differential-difference system was found
u11,x − u1x = eu
1+u11−u21 , u21,x − u2x = e−2u
1+u2+u21 , (2.8)
admitting two independent n-integrals having the form
I(1) = 2u1xx + u2xx − 2
(
u1x
)2
+ 2u1xu
2
x −
(
u2xx
)2
,
I(2) = u1xxxx + u1x
(
u2xxx − 2u1xxx
)
+ u1xx
(
4u1xu
2
x − 2
(
u1x
)2 − (u2x)2)
+ u1xx
(
u2xx − u1xx
)
+ u2xxu
1
x
(
u1x − 2u2x
)
+
(
u1x
)4
+
(
u1x
)2(
u2x
)2 − 2
(
u1x
)2
u2x,
8 R. Garifullin, I. Habibullin and M. Yangubaeva
which are also integrals of fully continuous system (1.1) corresponding to the same algebra. It
was shown in [18] that system (2.8) admits also x-integrals
F(1) = e−u
1
0+u
1
1 + e−u
1
1+u
1
2+u
2
2−u23 + eu
1
1−u12−u21+u22 + eu
1
2−u13 ,
F(2) = e−u
2
0+u
2
1 + e−2u
1
0+2u11+u
2
1−u22 + 2e−u
1
0+2u11−u12 + e2u
1
1−2u12−u21+u22 + eu
2
2−u23 . (2.9)
The goal of this section is to construct a difference-difference system having the same func-
tions F(1) and F(2) as their m-integrals.
To make the formulas shorter we change the variables
a = e−u
1
, b = e−u
2
(2.10)
where a, b are new unknowns.
The given m-integrals in these variables read
F(1) =
a0
a1
+
a1b3
a2b2
+
a2b1
a1b2
+
a3
a2
, F(2) =
b0
b1
+
a0
2b2
a12b1
+ 2
a0a2
a12
+
a2
2b1
a21b2
+
b3
b2
. (2.11)
Formulas (2.9) define integrals for a semi-discrete system (2.8) while (2.11) defines integrals for
a certain difference-difference system, that is why the variables in (2.11) should be labeled by
a double index, however we omitted here and below in this section the second index, because
its value is zero for all considered variables. Now we will look for the equations desired in the
variables a, b in the form
a1,1 = f(a0,0, a1,0, a0,1, b0,0, b1,0, b0,1), b1,1 = g(a0,0, a1,0, a0,1, b0,0, b1,0, b0,1).
Substitute the integrals (2.11) into the equations for m-integrals DmF(1) = F(1), DmF(2) = F(2)
and bring them to the following form
a0,1
f
+
fD2
ng
DnfDng
+
gDnf
fDng
+
D2
nf
Dnf
=
a0
a1
+
a1b3
a2b2
+
a2b1
a1b2
+
a3
a2
, (2.12a)
b0,1
g
+
a0,1
2Dng
f2g
+ 2
a0,1Dnf
f2
+
gDnf
2
f2Dng
+
D2
ng
Dng
=
b0
b1
+
a0
2b2
a12b1
+ 2
a0a2
a12
+
a2
2b1
a21b2
+
b3
b2
. (2.12b)
By differentiating equation (2.12b) with respect to the variables a3, b3 we get equations
1
Dng
D2
n
∂g
∂a1
= 0 ⇔ ∂g
∂a1
= 0,
1
Dng
D2
n
∂g
∂b1
=
1
b2
⇔ ∂g
∂b1
=
b0,1
b0
,
which imply immediately
g(a0,0, a1,0, a0,1, b0,0, b1,0, b0,1) =
b1,0b0,1
b0,0
+
g1(a0,0, a0,1, b0,0, b0,1)
b0,0
.
Similarly, differentiation of (2.12a) with respect to a3, b3 yields
1
Dnf
D2
n
∂f
∂a1
=
1
a2
⇔ ∂f
∂a1
=
a0,1
a0
,
fDng
b2DnfDng
+
1
Dnf
D2
n
∂f
∂b1
=
a1
a2b2
⇔ ∂f
∂b1
=
1
a0b0
D−1n (a0f − a1a0,1).
From these equations we get
f(a0,0, a1,0, a0,1, b0,0, b1,0, b0,1) =
a1,0a0,1
a0,0
+
Cb1,0
a0,0
.
Affine and Finite Lie Algebras and Integrable Toda Field Equations 9
By differentiating (2.12) with respect to a2 we obtain
a1,1
b2b2,1
∂
∂a2
D2
ng1
a2,1
+
b1,1
a1b2,1
=
b1
a1b2
,
2
a0,1
a1,1a1
+ 2
a2,1b1,1
a1a1,1b2,1
+
1
b2,1b2,0
∂
∂a2
D2
ng1 = 2
a0
a1
+ 2
a2b1
a21b2
.
The last two equations can be rewritten as follows
∂
∂a1
Dng1
a1,1
=
g1
a0a0,1
,
∂
∂a1
Dng1 = 2
a1,1g1
a0,1a0
.
By getting rid of the variable ∂a1Dng1 in these equations we find
Dng1
a21,1
=
g1
a20,1
⇔ g1 = C1a
2
0,1.
The last implication is due to the assumption that F(1) and F(2) are integrals of the lowest order.
As a result we get equations
a1,1a0,0 − a1,0a0,1 = Cb1,0, b1,1b0,0 − b1,0b0,1 = C1a
2
0,1.
After some rescaling we can put C = C1 = 1. Finally, we end up with the system of discrete
equations
a1,1a0,0 − a1,0a0,1 = b1,0, b1,1b0,0 − b1,0b0,1 = a20,1.
corresponding to the algebra B2. Turn back to the original variables u1, u2 (see (2.10))
∆u1 = eu
1
0,1+u
1
1,0−u21,0 , ∆u2 = e−2u
1
0,1+u
2
0,1+u
2
1,0 .
By construction the last system admits pair of integrals (2.9) in which the second index for the
variables u1, u2 is omitted, since its value is the same for all variables. To find the integrals in
the other direction one uses the discrete symmetry n↔ −m of the system.
2.3 Integrals of the systems corresponding to the algebras A2, G2, D3
2.3.1 System corresponding to the algebra A2
The Cartan matrix of A2 is
A =
(
2 −1
−1 2
)
.
The discrete system for A2 looks as follows
∆
(
u1
)
= eu
1
0,1+u
1
1,0−u21,0 , ∆
(
u2
)
= e−u
1
0,1+u
2
0,1+u
2
1,0 . (2.13)
For system (2.13) m-integrals are
F(1) = e−u
2
0,0+u
2
1,0 + e−u
1
0,0+u
1
1,0+u
2
1,0−u22,0 + eu
1
1,0−u12,0 ,
F(2) = e−u
1
0,0+u
1
1,0 + eu
1
1,0−u12,0−u21,0+u22,0 + eu
2
2,0−u23,0 .
To find the integrals in the other direction one uses the discrete symmetry n ↔ −m of the
system.
10 R. Garifullin, I. Habibullin and M. Yangubaeva
2.3.2 System corresponding to the algebra G2
The Cartan matrix of G2 is
A =
(
2 −1
−3 2
)
.
The discrete system for G2 is of the form
∆
(
u1
)
= eu
1
0,1+u
1
1,0−u21,0 , ∆
(
u2
)
= e−3u
1
0,1+u
2
0,1+u
2
1,0 .
Its m-integrals are
F(1) = eu
1
1,0−u12,0 + eu
1
−1,0−u1−2,0 + eu
2
1,0+u
1
1,0−u11,0−u22,0 + eu
1
−1,0+u
2
0,0−u10,0−u2−1,0
+ eu
2
1,0+2u10,0−u20,0−2u11,0 + eu
2
0,0+2u10,0−u21,0−2u1−1,0 + 2e2u
1
0,0−u1−1,0−u11,0 ,
F(2) = eu
2
2,0−u23,0 + e3u
1
0,0+u
2
0,0−u21,0−3u1−1,0 + 3eu
1
0,0+u
2
1,0−u12,0−u20,0 + 3eu
1
0,0+u
1
1,0−u1−1,0−u12,0
+ 3eu
2
1,0+3u11,0−2u10,0−u22,0−u12,0 + 3e3u
1
1,0+u
1
0,0−2u12,0 + 3e3u
1
0,0+u
1
1,0−u1−1,0
+ 3e3u
1
0,0+u
2
1,0−u20,0−2u11,0−u1−1,0 + 3eu
2
1,0+u
2
1,0−u22,0−u1−1,0 + 2e2u
2
1,0+u
2
0,0−u22,0
+ e3u
1
1,0+u
2
2,0−u21,0−3u12,0 + e3u
1
1,0+2u21,0−3u10,0−2u22,0 + e3u
1
0,0+2u21,0−2u20,0−3u11,0 + eu
2
2,0+u
2
−1,0 .
To find the integrals in the other direction one uses the discrete symmetry n ↔ −m of the
system.
2.3.3 System corresponding to the algebra D3
The Cartan matrix of D3 is
A =
2 −1 −1
−1 2 0
−1 0 2
.
The discrete system for D3 looks as
∆
(
u1
)
= eu
1
0,1+u
1
1,0−u20,1−u30,1 , ∆
(
u2
)
= eu
2
0,1+u
2
1,0−u11,0 , ∆
(
u3
)
= eu
3
0,1+u
3
1,0−u11,0 .
Its m-integrals are
F(1) = eu
3
0,0−u3−1,0 + eu
2
1,0−u22,0 + eu
2
1,0+u
1
1,0−u12,0−u20,0 + eu
1
1,0+u
3
0,0−u10,0−u31,0 ,
F(2) = eu
2
0,0−u2−1,0 + eu
3
1,0−u32,0 + eu
3
1,0+u
1
1,0−u12,0−u30,0 + eu
1
1,0+u
2
0,0−u10,0−u21,0 ,
F(3) = eu
1
1,0−u12,0 + eu
1
0,0−u1−1,0 + eu
2
0,0−u21,0+u30,0−u3−1,0 + eu
2
0,0−u2−1,0+u
3
0,0−u31,0+
+ eu
1
1,0−u10,0+u20,0−u21,0+u30,0−u31,0 + eu
1
0,0−u11,0+u20,0−u2−1,0+u
3
0,0−u3−1,0 .
By applying Theorem 1.2 one can prove that these integrals provide a complete set of inde-
pendent integrals. To find the integrals in the other direction one uses the discrete symmetry
n↔ −m of the system.
3 Symmetries of discrete systems
In this section we demonstrate that the discrete systems admit generalized symmetries. For the
case of the simple Lie algebras the systems admit local symmetries while for the case of affine
algebras the symmetries are nonlocal.
Affine and Finite Lie Algebras and Integrable Toda Field Equations 11
3.1 Generalized symmetries for the system A2
Higher symmetries for system corresponding to A2 are found by using the method suggested
in [12] (see also [26]). The lowest order symmetry is of the form
du10,0
dt
=
3eu
1
0,0−u11,0
D−1m F(1)
− 1,
du20,0
dt
= 1− 3eu
2
0,0−u2−1,0
D−1m F(1)
.
The next order symmetry depends on arbitrary functions f(x, y), g(x) of two and respectively
one variable and has the form
du10,0
dt
=
f(F(1), D
−1
m F(2)) + g(D−1m F(1))
D−1m F(2)
eu
1
0,0−u1−1,0 + f
(
F(1), D
−1
m F(2)
)
− g(F(1))
+ g
(
D−1m F(1)
)
−
f(F(1), D
−1
m F(2)) + f(D−2m F(1), D
−2
m F(2))− g(F(1))
D−1m F(1)
eu
1
0,0−u11,0 ,
du20,0
dt
=
f(F(1), D
−1
m F(2)) + f(D−2m F(1), D
−2
m F(2))− g(F(1))
D−1m F(1)
eu
2
0,0−u2−1,0
− f
(
D−2m F(1), D
−2
m F(2)
)
+
f(D−1m F(1), D
−2
m F(2)) + g(D−2m F(1))
D−2m F(2)
eu
2
0,0−u21,0 .
3.2 Evaluation of hyperbolic type symmetries for the system A
(1)
1
The method for searching nonlocal symmetries is illustrated with the following example
e−u1,1−u0,0 − e−u1,0−u0,1 = e−2v1,0 , e−v1,1−v0,0 − e−v1,0−v0,1 = e−2u0,1 , (3.1)
corresponding to the algebra A
(1)
1 with the Cartan matrix
A =
(
2 −2
−2 2
)
.
Recall that the continuous version of the system is
uxy = exp(2u− 2v), vxy = exp(2v − 2u). (3.2)
It can be proved that system (3.2) does not have any local generalized symmetry, however it
has nonlocal generalized symmetries, the simplest one can be represented in terms of s = u+ v,
r = u− v as follows
rt = rxxx − 2r3x, sxt = 2rxrxxx − 3r4x − r2xx + F (W,Wx).
Here F is an arbitrary function and W = sxx − r2x is the y-integral of system (3.2). Note that
years ago in [9] it was observed that equation rt = rxxx−2r3x is consistent with the system (3.2).
For the fully discrete analogue (3.1) of the system (3.2) we have a very similar situation.
The system (3.1) does not have any local generalized symmetry. One has to look for a nonlocal
symmetry. The main trouble arising in this case is connected with the guessing of the structure
of non-locality and the form of the symmetry.
Rewrite system (3.1) in the form
a1,1a0,0 − a1,0a0,1 = b21,0, b1,1b0,0 − b1,0b0,1 = a20,1, (3.3)
where ai,j = exp(−ui,j), bi,j = exp(−vi,j).
12 R. Garifullin, I. Habibullin and M. Yangubaeva
We will look for the hyperbolic type symmetry (see Definition 1.5) of (3.3) in such a form
∂ta1,0 = f1(a0,0, a1,0)∂ta0,0 + f(a−1,0, a0,0, a1,0, a2,0, b−1,0, b0,0, b1,0, b2,0),
∂tb1,0 = g1(b0,0, b1,0)∂tb0,0 + g(a−1,0, a0,0, a1,0, a2,0, b−1,0, b0,0, b1,0, b2,0). (3.4)
Here f1, g1, f , g are unknown functions. Right hand side of (3.4) corresponds to the function G
in (1.10). The function G̃ is evaluated in terms of G below by means of the compatibility
conditions.
From (3.4) we can find
∂ta1,1 = Dm(f1)∂ta0,1 +Dmf, ∂tb1,1 = Dm(g1)∂tb0,1 +Dmg. (3.5)
After differentiation (3.1) with respect to t by means of the systems (3.4), (3.5) we get
∂ta0,0(a1,1 − a0,1f1) + ∂ta0,1(a0,0Dmf1 − a1,0)− 2∂tb0,0b1,0g1 = · · · ,
−2a0,1∂ta0,1 + ∂tb0,0(b1,1 − b0,1g1) + ∂tb0,1(b0,0Dmg1 − b1,0) = · · · . (3.6)
Here the right hand sides do not depend on the derivatives of dynamical variables with respect
to t. By applying the operator Dn to both sides of (3.6) we obtain
∂ta0,0f1Dn(a1,1 − a0,1f1) + ∂ta0,1Dmf1Dn(a0,0Dmf1 − a1,0)− 2∂tb1,0b2,0g1Dng1 = · · · ,
−2a1,1∂tDmf1 + ∂tb0,0g1Dn(b1,1 − b0,1g1) + ∂tb0,1Dmg1Dn(b0,0Dmg1 − b1,0) = · · · . (3.7)
System of equations (3.6), (3.7) is a system of linear algebraic equations with unknowns ∂ta0,0,
∂tb0,0, ∂ta0,1, ∂tb0,1. If the determinant of this system is different from zero, then due to the
Cramer’s rule the system has unique solution, and therefore the searched generalized symmetry
is local. This output is in contradiction with our previous study proving the absence of local
symmetries. Thus the determinant should be zero∣∣∣∣∣∣∣∣
a1,1 − f1a0,1 a0,0Dmf1 − a1,0
f1(a2,1 − a1,1Dnf1) (a1,0DnDmf1 − a2,0)Dmf1
0 −2a1,1Dmf1
0 −2a0,1
−2b1,0g1 0
−2b2,0g1Dng1 0
g1(b2,1 − b1,1Dng1) Dmg1(b1,0DnDmg1 − b2,0)
b1,1 − g1b0,1 b0,0Dmg1 − b1,0
∣∣∣∣∣∣∣∣ .
Vanishing of the determinant implies
f1(a0,0, a1,0) = a1,0/a0,0, g1(b0,0, b1,0) = b1,0/b0,0, (3.8)
In virtue of (3.8) equations (3.6), (3.7) take the form
∂ta0,0
a0,0
+
∂ta0,1
a0,1
− 2
∂tb0,0
b0,0
=
2
b1,0
g +
a0,1
b21,0
f − a0,0
b21,0
Dmf,
∂ta0,0
a0,0
+
∂ta0,1
a0,1
− 2
∂tb0,0
b0,0
=
2
b2,0
Dng +
a1,1
b22,0
Dnf −
a1,0
b22,0
DnDmf −
f
a1,0
− Dmf
a1,1
+
2
b1,0
g,
∂tb0,0
b0,0
+
∂tb0,1
b0,1
− 2
∂ta0,1
a0,1
=
b0,1
a20,1
g +
b0,0
a20,1
Dmg,
∂tb0,0
b0,0
+
∂tb0,1
b0,1
− 2
∂ta0,1
a0,1
=
b1,1
a21,1
Dng +
b1,0
a21,1
DnDmg +
2
a1,1
Dmf −
g
b1,0
− Dmg
b1,1
. (3.9)
Affine and Finite Lie Algebras and Integrable Toda Field Equations 13
We can see that the left hand sides of the first and third equations as well as the left hand sides
of the second and fourth equations of the last system are identical. Comparison of their right
hand sides gives a system of two equation for f , g
a1,0
b22,0
DnDmf −
a1,1
b22,0
Dnf −
a1,0a0,1
a1,1b21,0
Dmf +
a1,1a0,0
a1,0b21,0
f − 2
b2,0
Dng = 0, (3.10)
b1,0
a21,1
DnDmg +
b1,1
a21,1
Dng −
b1,0b0,1
b1,1a20,1
Dmg −
b1,1b0,0
b1,0a20,1
g +
2
a1,1
Dmf = 0. (3.11)
Differentiate (3.10) and (3.11) with respect to a3,0, b3,0, b−1,0 or a−1,0 and get
b0,0a0,0
a21,0
∂f
∂b−1,0
= Dm
(
b0,0a0,0
a21,0
∂f
∂b−1,0
)
,
Dm
(
a20,0
a21,0
∂f
∂a−1,0
)
=
a20,0
a21,0
∂f
∂a−1,0
+
2a−1,1a
2
0,1
a21,1b0,0
Dm
∂f
∂b−1,0
, (3.12)
a1,0
b0,0
∂g
∂a2,0
=
a1,1
b0,1
Dm
∂g
∂a2,0
, Dm
∂g
∂b2,0
+
2b1,0b2,0
a1,0b1,1
Dm
∂g
∂a2,0
=
b1,0b0,1
b0,0b1,1
∂g
∂b2,0
, (3.13)
∂f
∂a2,0
+
2b1,0
a0,1
∂g
∂a2,0
=
a1,1a0,0
a1,0a0,1
Dm
∂f
∂a2,0
,
∂f
∂b2,0
+
2b1,0
a0,1
∂g
∂b2,0
=
2a0,0b2,0
a1,0a0,1
Dm
∂f
∂a2,0
+
a0,0b1,1
a0,1b1,0
Dm
∂f
∂b2,0
,
∂g
∂b−1,0
+
2b1,0a
2
0,0
a1,0b1,−1b0,0
∂f
∂b−1,0
=
b21,0b
2
0,−1
b21,−1b
2
00,
D−1m
∂g
∂b−1,0
,
∂g
∂a−1,0
+
2a20,0b1,0
a1,0b1,−1b0,0
∂f
∂a−1,0
=
b21,0a0,−1b0,−1
a0,0b0,0b1,−1
D−1m
∂g
∂a−1,0
+
4a20,0a−1,0b1,0
a1,0b0,−1b1,−1b0,0
∂f
∂b−1,0
+
2a−1,0
b0,−1
∂g
∂b−1,0
.
We use the last system of eight equations in order to specify dependence of the functions f , g
on the variables a−1,0, a2,0, b−1,0, b2,0 corresponding to the lowest and highest values of the first
index. From the first equation in (3.12) we get
∂f
∂b−1,0
=
C7a
2
1,0
b0,0a0,0
.
Then the second equation takes the form
Dm
(
a20,0
a21,0
∂f
∂a−1,0
)
=
a20,0
a21,0
∂f
∂a−1,0
+
2C7a−1,1a0,1
b0,1b0,0
.
It can easily be proved that the expression
2a−1,1a0,1
b0,1b0,0
does not belong to the image of the operator
Dm − 1, so we have to put C7 = 0 and then
∂f
∂a−1,0
=
C4a
2
1,0
a20,0
.
From the pair of equations (3.13) we have
∂g
∂a2,0
= 0,
∂g
∂b2,0
=
C2b0,0
b1,0
.
14 R. Garifullin, I. Habibullin and M. Yangubaeva
Continuing this way one can find dependence of the functions f , g on the variables a−1,0, a2,0,
b−1,0, b2,0
f =
a0,0b2,0
b1,0
C1 + C2
(
a0,0a2,0
a1,0
+
a0,0b
2
2,0
a1,0b21,0
+
2b0,0a1,0b2,0
b21,0
)
+
a21,0a−1,0
a20,0
C4 + f1(a0,0, a1,0, b0,0, b1,0),
g =
b0,0b2,0
b1,0
C2 + C4
(
b21,0b−1,0
b20,0
+
b31,0a
2
−1,0
a20,0b
2
0,0
+
2b1,0a1,0a−1,0
a20,0
)
+
b21,0a−1,0
a0,0b0,0
C5 + g1(a0,0, a1,0, b0,0, b1,0).
For the functions f1, g1 from the same system (3.10), (3.11) we obtain the following non-
homogeneous equations
a1,0
b22,0
DnDmf1 −
a1,1
b22,0
Dnf1 −
a1,0a0,1
a1,1b22,0
Dmf1 +
a1,1a0,0
a1,0b21,0
f1 −
2
b2,0
Dng1 = · · · , (3.14)
b1,0
a21,1
DnDmg1 +
b1,1
a21,1
Dng1 −
b1,0b0,1
b1,1a20,1
Dmg1 −
b1,1b0,0
b1,0a20,1
g1 +
2
a1,1
Dmf1 = · · · . (3.15)
Differentiating (3.15) with respect to the variable a2,0 we get
a0,0
b0,0
∂g1
∂a1,0
−Dm
(
a0,0
b0,0
∂g1
∂a1,0
)
=
2C2(a
3
0,1a1,0 − b31,0b0,1)
a0,0a0,1b1,1b1,0
+ 2(C4 − C2)
a30,1a−1,0 − b1,1b30,0
a0,0b0,0a0,1b0,1
.
From this equation we can find
C4 = C2,
a0,0
b0,0
∂g1
∂a1,0
=
2C2a1,0b0,0
a0,0b1,0
+ C6,
therefore
g1 = C2
a21,0b
2
0,0
a20,0b1,0
+ C6
a1,0b0,0
a0,0
+ g2(a0,0, b0,0, b1,0).
Differentiating (3.15) with respect to b2,0 we get
Dm
(
∂g2
∂b1,0
)
− ∂g2
∂b1,0
= 2(C1 − C6)
b0,0b1,0
a0,0a0,1
+ 2(C1 − C5)
a20,1a0,0a−1,1 − b20,0b1,0b0,1
a0,0b0,0a0,1b0,1
,
therefore
C6 = C1, C5 = C1, g2 = C3b1,0 + g3(a0,0, b0,0).
Now apply the operator D−1n to the equation (3.14) and then differentiate the obtained result
with respect to the variable b−1,0
Dm
(
a0,0b1,0
a21,0
∂f1
∂b0,0
)
− a0,0b1,0
a21,0
∂f1
∂b0,0
= 2C2
b31,0b0,1 − a1,0a30,1
a0,0a0,1b1,0b1,1
,
therefore
f1 = C2
a31,0b
2
0,0
a20,0b
2
1,0
+ C8
a21,0b0,0
a0,0b1,0
+ f2(a0,0, a1,0, b1,0).
Affine and Finite Lie Algebras and Integrable Toda Field Equations 15
Substitute in (3.14) the expression found instead of f1 and differentiate with respect to a2,0 to
get
Dm
(
∂f2
∂a1,0
)
− ∂f2
∂a1,0
= 2(C1 − C8)
a1,0a
3
0,1 − b31,0b0,1
a0,0a0,1b1,0b1,1
,
therefore
C8 = C1, f2 = C9a1,0 + f3(a0,0, b1,0).
For the functions f3, g3 we have a system
a1,0
b22,0
DnDmf3 −
a1,1
b22,0
Dnf3 −
a1,0a0,1
a1,1b22,0
Dmf3 +
a1,1a0,0
a1,0b21,0
f3 −
2
b2,0
Dng3 = 2(C9 − C3),
b1,0
a21,1
DnDmg3 +
b1,1
a21,1
Dng3 −
b1,0b0,1
b1,1a20,1
Dmg3 −
b1,1b0,0
b1,0a20,1
g3 +
2
a1,1
Dmf3 = 2(C9 − C3). (3.16)
We see that (3.16) is satisfied identically if one chooses
C9 = C3, f3 = 0, g3 = 0.
Thus we find the final form of the symmetry searched
∂ta1,0
a1,0
− ∂ta0,0
a0,0
= C1
(
a0,0b2,0
a1,0b1,0
+
a1,0b0,0
a0,0b1,0
)
+ C2
(
a1,0a−1,0
a20,0
+
2b0,0b2,0
b21,0
+
a21,0b
2
0,0
a20,0b
2
1,0
+
a0,0a2,0
a21,0
+
a20,0b
2
2,0
a21,0b
2
1,0
)
+ C3,
∂tb1,0
b1,0
− ∂tb0,0
b0,0
= C1
(
a−1,0b1,0
a0,0b0,0
+
a1,0b0,0
a0,0b1,0
)
(3.17)
+ C2
(
2a1,0a−1,0
a20,0
+
b0,0b2,0
b21,0
+
a21,0b
2
0,0
a20,0b
2
1,0
+
b−1,0b1,0
b20,0
+
a−1,0b
2
1,0
a20,0b
2
0,0
)
+ C3.
Here C1, C2, C3 are arbitrary constants. From (3.9) one can find the function G̃, then (1.10)
looks like
∂ta0,1
a0,1
=
∂tb0,0
b0,0
− ∂ta0,0
a0,0
+ C1
b1,0
a0,0
(
2a−1,0
b0,0
− b0,0
a0,1
)
+ C2
(
2b1,0b−1,0
b20,0
+
2b21,0a
2
−1,0
a20,0b
2
0,0
+
2a1,0a−1,0
a20,0
−
a−1,0b
2
1,0
a20,0a0,1
−
b20,0a1,0
a20,0a0,1
)
+ C3,
∂tb0,1
b0,1
=
2∂ta0,0
a0,0
− 3∂tb0,0
b0,0
+ C2
(
2b1,0a−1,0
a0,0b0,0
+
b0,0a0,1
a0,0b0,1
−
a−1,0a
2
0,1
a0,0b0,0b0,1
)
+ C2
(
2a1,0a−1,0
a20,0
+
2b1,0b−1,0
b20,0
+
2a0,1b1,0a−1,0
a20,0b0,1
+
2b21,0a
2
−1,0
a20,0b
2
0,0
−
b20,0b1,0
a20,0b0,1
−
a20,1b−1,0
b20,0b0,1
−
a20,1a
2
−1,0b1,0
a20,0b
2
0,0b0,1
)
+ C3. (3.18)
Thus we have proved the following
Theorem 3.1. Equations (3.17) and (3.18) define a hyperbolic type symmetry for equation (3.3).
16 R. Garifullin, I. Habibullin and M. Yangubaeva
Remark 3.2. By applying the replacement n↔ −m to the equations (3.17) and (3.18) one can
obtain the second hyperbolic type symmetry for equation (3.3).
By analogy with the continuous case we have a differential constraint completely consistent
with system (3.3), which is obtained from the last system by applying the operator (Dn − 1)−1
to the difference of the two equations
∂tb0,0
b0,0
− ∂ta0,0
a0,0
= C1
a−1,0b1,0
a0,0b0,0
+ C2
(
a−1,0a1,0
a20,0
+
b−1,0b1,0
b20,0
+
a2−1,0b
2
1,0
a20,0b
2
0,0
)
.
Under the Cole–Hopf type transformation
â0,0 =
a1,0
a0,0
, b̂0,0 =
b1,0
b0,0
system (3.3) converts to the following one
â1,1â0,0â0,1 − â1,0â0,1â0,0 = b̂21,0(â0,0 − â0,1),
b̂1,1b̂0,0b̂0,1 − b̂1,0b̂0,1b̂0,0 = â20,1(b̂0,1 − b̂0,0). (3.19)
This transformation brings our hyperbolic type symmetry to generalized symmetry of usual form
for the new system (3.19)
∂tâ0,0 = C1
(
b̂1,0 +
â20,0
b̂0,0
)
+ C2
(
â20,0
â−1,0
+
2b̂1,0â0,0
b̂0,0
+
â30,0
b̂20,0
+ â1,0 +
b̂21,0
â0,0
)
+ C3â0,0,
∂tb̂0,0 = C1
(
b̂20,0
â−1,0
+ â0,0
)
+ C2
(
2â0,0b̂0,0
â−1,0
+ b̂1,0 +
â20,0
b̂0,0
+
b̂20,0
b̂−1,0
+
b̂30,0
â2−1,0
)
+ C3b̂0,0.
3.3 Hyperbolic type symmetries for the system A
(2)
2
The Cartan matrix of A
(2)
2 is
A =
(
2 −1
−4 2
)
.
The discrete system for A
(2)
2 looks as
∆
(
u1
)
= eu
1
0,1+u
1
1,0−u21,0 , ∆
(
u2
)
= e−4u
1
0,1+u
2
0,1+u
2
1,0 .
First part of its hyperbolic type symmetry (function G) is(
u11,0 − u10,0
)
t
= C1
(
e2u
1
1,0−u10,0−u12,0 + e2u
1
1,0−2u10,0+u21,0−u22,0 + e2u
1
0,0−2u11,0+u21,0−u20,0
+ e2u
1
0,0−u11,0−u1−1,0
)
+ C2
(
3e4u
1
1,0−2u10,0−2u12,0 + eu
1
1,0−u10,0+u12,0−u13,0
+ 3e−u
1
2,0+u
2
1,0+u
1
0,0−u20,0 + 3e4u
1
1,0−u12,0−3u10,0+u21,0−u22,0 + 2eu
1
1,0−u12,0+u10,0−u1−1,0
+ e4u
1
1,0−4u10,0+2u21,0−2u22,0 + 2eu
2
2,0−2u21,0−u20,0 + 3eu
1
1,0−u22,0+u21,0−u1−1,0
+ e−u
1
1,0+u
1
−1,0+u
1
0,0−u1−2,0 + e−4u
1
1,0+2u21,0−2u20,0+4u10,0
+ e4u
1
1,0−u10,0+u22,0−3u12,0−u21,0 + e−u
1
1,0+u
1
−1,0+u
2
0,0−u2−1,0
+ 3e−2u
1
1,0−2u1−1,0+4u10,0 + e−u
1
0,0+u
2
2,0+u
1
2,0−u23,0
Affine and Finite Lie Algebras and Integrable Toda Field Equations 17
+ 3e3u
1
1,0+u
2
1,0−u1−1,0−u20,0+4u10,0 + e−u
1
1,0−u21,0−3u1−1,0+u
2
0,0+4u10,0
)
+ C3,(
u21,0 − u20,0
)
t
= 2C1
(
e−2u
1
1,0+u
2
1,0−u20,0+2u10,0 + 2e−u
1
1,0−u1−1,0+2u10,0 + e−u
2
1,0+2u10,0+u
2
0,0−2u1−1,0
)
+ 2C2
(
2eu
1
1,0−u12,0+u10,0−u1−1,0 + 2e−u
1
2,0+u
2
1,0+u
1
0,0−u20,0
+ 4e−3u
1
1,0+u
2
1,0−u1−1,0−u20,0+4u10,0 + e−4u
1
1,0+2u21,0−2u20,0+4u10,0
+ 2eu
1
1,0−u22,0+u21,0−u1−1,0 + e−u
2
2,0+2u21,0−u20,0 + 2e−u
1
1,0+u
1
−1,0+u
1
0,0−u1−2,0
+ 2e−u
1
1,0+u
1
−1,0+u
2
0,0−u2−1,0 + 4e−u
1
1,0−u21,0−3u1−1,0+u
2
0,0+4u10,0
+ 2e−u
2
1,0+u
1
0,0+u
2
0,0−u1−2,0 + e−u
2
1,0+2u20,0−u2−1,0 + 6e−2u
1
1,0−2u1−1,0+4u10,0
+ e−2u
2
1,0+4u10,0+2u20,0−4u1−1,0
)
+ 2C3.
Here C1, C2, C3 are arbitrary constants. Second part of hyperbolic type symmetry (function G̃)
can be evaluated automatically from the compatibility conditions.
And for combination we have a local constraint(
2u10,0 − u20,0
)
t
= 2C1
(
e2u
1
0,0−u11,0−u1−1,0 + e2u
1
0,0−2u1−1,0+u
2
0,0−u21,0
)
+ 2C2
(
e−u
1
−1,0−u12,0+u10,0+u11,0 + eu
1
1,0+u
2
1,0−u1−1,0−u22,0
+ e−3u
1
1,0+u
2
1,0+4u10,0−u1−1,0−u20,0 + 3e−2u
1
1,0+4u10,0−2u1−1,0
+ 3e−u
1
1,0−u21,0+4u10,0−3u1−1,0+u
2
0,0 + e−u
1
1,0+u
1
−1,0+u
2
0,0−u2−1,0
+ e−u
1
1,0+u
1
0,0+u
1
−1,0−u1−2,0 + e−2u
2
1,0+4u10,0−4u1−1,0+2u20,0
+ e−u
2
1,0+2u20,0−u2−1,0 + 2e−u
2
1,0+u
1
0,0+u
2
0,0−u1−2,0
)
.
4 Characteristic m-algebra for the case A2
Let us describe briefly the properties of the characteristic Lie algebras of the system
a0,0a1,1 = a1,0a0,1 + b1,0, b0,0b1,1 = b1,0b0,1 + a0,1. (4.1)
Recall that system (4.1) corresponds to the simple Lie algebra A2. First we concentrate on the
notion of the characteristic m-algebra for the system (4.1). Lie algebra on the other destination
is studied similarly. Recall that according to the definition an m-integral F (a0,0, b0,0, a1,0, b1,0,
a−1,0, b−1,0, . . . ) should satisfy the equation DmF = F . In the coordinate representation this
condition reads
F (a0,1, b0,1, a1,1, b1,1, a−1,1, b−1,1, . . . ) = F (a0,0, b0,0, a1,0, b1,0, a−1,0, b−1,0, . . . ). (4.2)
Evidently the right hand side in (4.2) does not depend on the variables a0,1 and b0,1 hence
the conditions hold ∂
∂a0,1
D−1m F = 0, ∂
∂b0,1
D−1m F = 0 as well as Y1F = 0, Y2F = 0 where
Y1 := D−1m
∂
∂a0,1
Dm, Y2 := D−1m
∂
∂b0,1
Dm. Denote through Lm the Lie algebra generated by the
operators X1 = ∂
∂a0,−1
, X2 = ∂
∂b0,−1
, Y1, Y2. Algebra Lm is called characteristic m-algebra.
Obviously, operators X1, X2 are the first-order linear differential operators, or vector fields.
The operators Y1, Y2 can also be rewritten as vector fields of the form
Y1 =
∂
∂a0,0
+
(
a1,0
a0,0
− b1,0b0,−1
a0,0b0,0a0,−1
)
∂
∂a1,0
+
(
a−1,0
a0,0
+
b0,−1
a0,0a0,−1
)
∂
∂a−1,0
+ · · ·
18 R. Garifullin, I. Habibullin and M. Yangubaeva
+
1
b0,−1
∂
∂b1,0
−
(
a−1,0
a0,0b0,−1
+
1
a0,0a0,−1
)
∂
∂b−1,0
+ · · · ,
Y2 =
∂
∂b0,0
+
(
b1,0
b0,0
− a0,0
b0,0b0,−1
)
∂
∂b1,0
+
(
b−1,0
b0,0
+
a−1,0
b0,0b0,−1
)
∂
∂b−1,0
+ · · · .
We use the following lemma to show that m-algebra is of finite dimension.
Lemma 4.1. Suppose that the vector field
K =
∞∑
k=1
(
αk
∂
∂ak
+ α−k
∂
∂a−k
)
+
∞∑
k=1
(
βk
∂
∂bk
+ β−k
∂
∂b−k
)
satisfies the equality DnKD
−1
n = hK, where h is a function depending on shifts of variables a
and b, then K = 0.
Lemma can be proved by applying both sides of the equation DnKD
−1
n = hK to the dyna-
mical variables ak, bk.
One can easily check that
DnX1D
−1
n =
a0,0
a1,0
X1, DnX2D
−1
n =
1
a1,0
X1 +
b0,0
b1,0
X2,
DnY1D
−1
n =
a0,−1
a1,−1
Y1 −
a0,−1
a1,−1b1,−1
Y2, DnY2D
−1
n =
b0,−1
b1,−1
Y2.
Put X̃1 = a0,0X1, X̃2 = b0,0X2, Ỹ1 = a0,−1Y1, Ỹ2 = b0,−1Y2, then
DnX̃1D
−1
n = X̃1, DnX̃2D
−1
n =
b1,0
a0,0a1,0
X̃1 + X̃2,
DnỸ1D
−1
n = Ỹ1 −
a0,−1
b0,−1b1,−1
Ỹ2, DnỸ2D
−1
n = Ỹ2.
Taking commutators of the vector fields X̃1, X̃2, Ỹ1, Ỹ2 we get vector fields
P1 = [X1, Y1], P2 = [X2, Y1], P3 = [X2, Y2].
Lemma 4.2.
DnP1D
−1
n = P1 −
a0,0
b0,−1b1,−1
Ỹ2,
DnP2D
−1
n = P2 +
b1,0
a0,0a1,0
P1 −
a0,−1
b0,−1b1,−1
P3
+
(
a0,−1b1,0
a20,0a1,0
+
a1,−1b1,0
a0,0a21,0
)
X̃1 +
(
a0,−1b0,0
b20,−1b1,−1
+
a1,−1a0,0b1,0
a1,0b0,−1b21,−1
)
Ỹ2,
DnP3D
−1
n = P3 −
b1,−1
a0,0a1,0
X̃1.
Lemma can be proved by direct calculations. It allows to derive the following table of com-
mutators which shows that the characteristic Lie algebra Lm is of dimension seven:
X̃1 X̃2 Ỹ1 Ỹ2 P1 P2 P3
X̃1 0 0 P1 0 0 R1 0
X̃2 0 0 P2 P3 R1 R2 −2X̃2
Ỹ1 −P1 −P2 0 0 2Ỹ1 R3 R4
Ỹ2 0 −P3 0 0 0 R4 0
P1 0 −R1 −2Ỹ1 0 0 Q1 Q2
P2 −R1 −R2 −R3 −R4 −Q1 0 Q3
P3 0 2X̃2 −R4 0 −Q2 −Q3 0
Affine and Finite Lie Algebras and Integrable Toda Field Equations 19
Here the following notations are used
R1 = X̃2 −
b1,0
b0,−1
P1 +
b20,0
b20,−1
Ỹ2,
R2 =
2a0,−1b
2
0,0
a0,0b20,−1
P3 −
2a0,−1b
3
0,0
a0,0b30,−1
Ỹ2 +
2a0,−1b0,0
a0,0b0,−1
X̃2,
R3 =
2a20,−1b0,0
a20,0b0,−1
P1 −
2a0,−1b0,0
a0,0b0,−1
Ỹ1 +
2a30,−1b0,0
a30,0b0,−1
X̃1,
R4 = −Ỹ1 −
a20,−1
a20,0
X̃1 −
a0,−1
a0,0
P1,
Q1 =
a0,−1b0,0
a0,0b0,−1
P1 − 3P2 − P3 +
a20,−1b0,0
a20,0b0,−1
X̃1 +
b0,0
b0,−1
Ỹ1,
Q2 =
2b0,0
b0,−1
Ỹ2 − 2P3,
Q3 = −3P2 +
a0,−1b0,0
a0,0b0,−1
P3 −
a0,−1
a0,0
X̃2 −
a0,−1b
2
0,0
a0,0b20,−1
Ỹ2.
Due to the reasonings above any m-integral F (. . . , a0,0, b0,0, a1,0, b1,0, a2,0, b2,0, . . . ) should satisfy
equations
X̃1(F ) = 0, X̃2(F ) = 0, Ỹ1(F ) = 0, Ỹ2(F ) = 0,
P1(F ) = 0, P2(F ) = 0, P3(F ) = 0. (4.3)
Solving system (4.3), it is enough to assume that F depends on b0,0, a0,0, b1,0, a1,0, b2,0,
a2,0 or, alternatively, F depends on a−1,0, b0,0, a0,0, b1,0, a1,0, b2,0. Under such assumptions
system (4.3) generates two systems of the first-order linear partial differential equations which
can be solved by Jacobi method. By solving these systems we find two independent m-integrals
F(1) =
b0,0
b1,0
+
a0,0b2,0
a1,0b1,0
+
a2,0
a1,0
, F(2) =
a−1,0
a0,0
+
a1,0b0,0
a0,0b1,0
+
b2,0
b1,0
.
5 Cutting off constraints for the Hirota equation
and discrete Zakharov–Shabat systems
In this section we construct Lax pairs for discrete systems corresponding to Cartan matrices of
series AN , BN , CN , D
(2)
N and A
(1)
1 . To this end we impose cutting off constrains for the Hirota
equation compatible with its Lax pair.
It is well known that Hirota chain
tj0,0t
j
1,1 − t
j
1,0t
j
0,1 = tj−11,0 t
j+1
0,1 (5.1)
admits the Lax pair consisting of two linear discrete equations [7]
ψj1,0 =
tj+1
1,0 t
j
0,0
tj+1
0,0 t
j
1,0
ψj0,0 − ψ
j+1
0,0 , ψj0,1 = ψj0,0 +
tj+1
0,1 t
j−1
0,0
tj0,0t
j
0,1
ψj−10,0 . (5.2)
Here the lower indices mean as previously shifts of the arguments, and the upper index enume-
rates the field variables tj and eigenfunctions ψj . Exclude from the system of equations (5.2) all
20 R. Garifullin, I. Habibullin and M. Yangubaeva
the eigenfunctions with the upper index different from j. As a result one gets a linear discrete
hyperbolic equation for ψj
ψj1,1 − ψ
j
1,0 −
tj+1
1,1 t
j
0,1
tj+1
0,1 t
j
1,1
ψj0,1 +
tj0,0t
j+1
1,1
tj1,0t
j+1
0,1
ψj0,0 = 0. (5.3)
It is remarkable that by construction formulas (5.2) define Laplace transformations for the
linear hyperbolic equation (5.3). Evidently, equation (5.1) is invariant under the transformation
defined as n→ 1−m, m→ 1− n. Under this transformation the Lax pair (5.2) transforms to
a Lax pair
yj−1,0 = yj0,0 +
tj+1
−1,0t
j−1
0,0
tj−1,0t
j
0,0
yj−10,0 , yj0,−1 =
tj+1
0,−1t
j
0,0
tj+1
0,0 t
j
0,−1
yj0,0 − y
j+1
0,0 , (5.4)
and equation (5.3) transforms to an equation
yj1,1 −
tj1,0t
j+1
0,1
tj+1
0,0 t
j
1,1
yj1,0 −
tj1,0t
j
0,1
tj0,0t
j
1,1
yj0,1 +
tj1,0t
j+1
0,1
tj+1
0,0 t
j
1,1
yj0,0 = 0. (5.5)
Put yj0,0 =
tj+1
−1,0
tj0,0
gj0,0, then Lax pair (5.4) transforms to a Lax pair
gj−1,0 =
tj+1
−1,0t
j
−1,0
tj0,0t
j+1
−2,0
(
gj0,0 + gj−10,0
)
, gj0,−1 =
tj+1
0,−1t
j+1
−1,0
tj+1
0,0 t
j+1
−1,−1
gj0,0 −
tj0,−1t
j+2
−1,0
tj+1
0,0 t
j+1
−1,−1
gj+1
0,0 , (5.6)
and equation (5.5) transforms to an equation
gj1,1 − g
j
1,0 −
tj1,0t
j+1
−1,1
tj+1
0,1 t
j
0,0
gj0,1 +
tj1,0t
j+1
−1,0
tj+1
0,0 t
j
0,0
gj0,0 = 0. (5.7)
Equations (5.6) define Laplace transformations for the linear hyperbolic equation (5.7). Thus
we have two different Lax pairs for the Hirota chain and consequently two families (5.3), (5.7)
of linear discrete hyperbolic equations enumerated by j. Study the question when an equation
from one family can be related, by a linear transformation, to an equation from the other family.
To this end we evaluate the Laplace invariants of these equations.
Recall that the Laplace invariants of a discrete hyperbolic type equation of the form
a0,0f1,1 + b0,0f1,0 + c0,0f0,1 + d0,0f0,0 = 0
are given by (see [2, 8, 31, 33])
K1 =
b0,0c1,0
a0,0d1,0
, K2 =
b0,1c0,0
a0,0d0,1
.
By virtue of these formulas the invariants K1ψ, K2ψ and K1g, K2g of equations (5.3), (5.7)
are, respectively,
K1ψ =
tj2,0t
j
1,1
tj1,0t
j
2,1
, K2ψ =
tj+1
1,1 t
j+1
0,2
tj+1
0,1 t
j+1
1,2
, K1g =
tj+1
0,1 t
j+1
1,0
tj+1
0,0 t
j+1
1,1
, K2g =
tj1,0t
j
0,1
tj0,0t
j
1,1
.
It is known that two linear hyperbolic type equations are related to one another by a linear
transformation only if their corresponding Laplace invariants are equal. Evidently in generic
Affine and Finite Lie Algebras and Integrable Toda Field Equations 21
case coincidence of the Laplace invariants generates two constraints on the field variables tj =
tj(n,m). Only for some special cases it gives only one constraint. We are interested in such
special cases. For instance pair of equations K1ψ(n,m, j) = K1g(n+ 1,m, j− 1), K2ψ(n,m, j) =
K2g(n+ 1,m, j − 1) is equivalent to the constraint
tj−11,0 = tj+1
0,1
which is interpreted as a cutting off boundary condition for the chain (5.1). For simplicity we
put j = 0, so the boundary condition becomes
t−11,0 = t10,1. (5.8)
Lemma 5.1. Hirota equation (5.1) is compatible with the reduction of the type of parity
t−mm+i,k = tmi,m+k
and boundary condition (5.8) is a consequence of this reduction.
Following [15] we can construct a Lax pair for the reduced chain. Under the boundary
condition (5.8) we have coincidence of the invariants
K1ψ(n,m, j) = K1g(n+ 1,m, j − 1), K2ψ(n,m, j) = K2g(n+ 1,m, j − 1),
and
K1g(n,m, j) = K1ψ(n,m− 1, j − 1), K2g(n,m, j) = K2ψ(n,m− 1, j − 1),
and we can relate the eigenfunctions
g10,1 = λψ0
0,0, g01,0 = λψ1
0,0.
We study the finite reductions of the chain (5.1) on a finite interval NL ≤ j ≤ NR. The
reduction is obtained by imposing the boundary conditions at the left end-point j = NL
tNL−1
1,0 = tNL+1
0,1 (5.9)
and respectively at the right end-point j = NR
tNR+1
0,1 = tNR−1
1,0 . (5.10)
First we concentrate on the left end-point. Due to the reasonings above the eigenfunctions
should satisfy the following gluing conditions
ψNL−1
0,0 =
1
λ
gNL
0,1 , gNL−1
0,0 = λψNL
−1,0.
These conditions allow one to close the Lax equations at the left end-point
gNL
−1,0 =
tNL+1
−1,0 tNL
−1,0
tNL
0,0 t
NL+1
−2,0
(
gNL
0,0 + λψNL
−1,0
)
, ψNL
0,1 = ψNL
0,0 +
1
λ
tNL+1
0,1 tNL+1
−1,1
tNL
0,0 t
NL
0,1
gNL
0,1 . (5.11)
From (5.2), (5.6) we have
gNL
0,−1 =
tNL+1
0,−1 tNL+1
−1,0
tNL+1
0,0 tNL+1
−1,−1
gNL
0,0 −
tNL
0,−1t
NL+2
−1,0
tNL+1
0,0 tNL+1
−1,−1
gNL+1
0,0 , ψNL
1,0 =
tNL+1
1,0 tNL
0,0
tNL+1
0,0 tNL
1,0
ψNL
0,0 − ψ
NL+1
0,0 .
22 R. Garifullin, I. Habibullin and M. Yangubaeva
To derive similar equations at the point NR we use the right end-point constraint (5.10), for
which we have
gNR
0,0 = ψNR−1
0,−1 , ψNR
0,0 = gNR−1
1,0 .
These conditions allow one to close the Lax equations at the right end-point
ψNR−1
1,0 =
tNR−1
0,0 tNR
1,0
tNR−1
1,0 tNR
0,0
ψNR−1
0,0 − gNR−1
1,0 ,
gNR−1
0,−1 =
tNR
0,−1t
NR
−1,0
tNR
0,0 t
NR
−1,−1
gNR−1
0,0 −
(
tNR−1
0,−1
)2
tNR
0,0 t
NR
−1,−1
ψNR−1
0,−1 . (5.12)
From (5.2), (5.6) we have
gNR−1
−1,0 =
tNR
−1,0t
NR−1
−1,0
tNR−1
0,0 tNR
−2,0
(
gNR−1
0,0 + gNR−2
0,0
)
, ψNR−1
0,1 = ψNR−1
0,0 +
tNR
0,1 t
NR−2
0,0
tNR−1
0,0 tNR−1
0,1
ψNR−2
0,0 .
The Lax pair found above is not convenient to work with because the operators contain shifts
in opposite directions. Below we show that it can be rewritten in a usual form.
Shift of equation (5.11) forward with respect to the variable n brings it to the form
gNL
1,0 =
tNL+1
−1,0 tNL
1,0
tNL
0,0 t
NL+1
0,0
gNL
0,0 − λψ
NL
0,0 ,
gj1,0 =
tj+1
−1,0t
j
1,0
tj0,0t
j+1
0,0
gj0,0 − g
j−1
1,0 =
j∑
k=NL
(−1)j−k
tk1,0t
k+1
−1,0
tk0,0t
k+1
0,0
gk0,0 + (−1)j+1λψNL
0,0 ,
NL + 1 ≤ j ≤ NR − 1.
Shift of equation (5.12) forward with respect to the variable m brings it to the form
gNR−1
0,1 =
tNR
0,1 t
NR
−1,0
tNR
0,0 t
NR
−1,1
gNR−1
0,0 +
(
tNR−1
0,0
)2
tNR
0,0 t
NR
−1,1
ψNR−1
0,0 ,
gj0,1 =
tj+1
−1,0t
j+1
0,1
tj+1
0,0 t
j+1
−1,1
gj0,0 +
tj+1
−1,0t
j+1
0,1
tj+1
0,0 t
j+1
−1,1
gj+1
0,1 =
=
tj+1
−1,0t
j+1
0,1
tj+1
0,0 t
j+1
−1,1
gj0,0 +
NR−1∑
k=j+1
tj0,0t
k+1
−1,0t
k+1
0,1
tj+1
−1,1t
k
0,0t
k+1
0,0
gk0,0 +
tj0,0t
NR−1
0,0
tj+1
0,0 t
NR
0,0
ψNR−1
0,0 , NL ≤ j ≤ NR − 1.
So we have the following system of linear equations
ψj1,0 =
tj+1
1,0 t
j
0,0
tj+1
0,0 t
j
1,0
ψj0,0 − ψ
j+1
0,0 , NL ≤ j ≤ NR − 2, (5.13)
ψNR−1
1,0 =
tNR−1
0,0 tNR
1,0
tNR−1
1,0 tNR
0,0
ψNR−1
0,0 +
NR−1∑
k=NL
(−1)NR−k
tk1,0t
k+1
−1,0
tk0,0t
k+1
0,0
gk0,0 + (−1)NR−1λψNL
0,0 , (5.14)
ψNL
0,1 = ψNL
0,0 +
1
λ
tNL+1
0,1 tNR−1
0,0
tNL
0,1 t
NR
0,0
ψNR−1
0,0 +
NR−1∑
j=NL
1
λ
tNL+1
0,1 tk+1
0,1 t
k+1
−1,0
tNL
0,1 t
k
0,0t
k+1
0,0
gk0,0, (5.15)
Affine and Finite Lie Algebras and Integrable Toda Field Equations 23
ψj0,1 = ψj0,0 +
tj0,1t
j−2
0,0
tj−10,0 t
j−1
0,1
ψj−10,0 , NL + 1 ≤ j ≤ NR − 1, (5.16)
gj1,0 =
j∑
k=NL
(−1)j−k
tk1,0t
k+1
−1,0
tk0,0t
k+1
0,0
gk0,0 + (−1)j+1λψNL
0,0 , NL ≤ j ≤ NR − 1, (5.17)
gj0,1 =
tj+1
−1,0t
j+1
0,1
tj+1
0,0 t
j+1
−1,1
gj0,0 +
NR−1∑
k=j+1
tj0,0t
k+1
−1,0t
k+1
0,1
tj+1
−1,1t
k
0,0t
k+1
0,0
gk0,0 +
tj0,0t
NR−1
0,0
tj+1
0,0 t
NR
0,0
ψNR−1
0,0 ,
NL ≤ j ≤ NR − 1. (5.18)
In the next subsection we gather these equations to a matrix form.
5.1 Lax pair for systems corresponding to the algebras D
(2)
N , A
(1)
1
Imposing of non-degenerate boundary conditions (5.9), (5.10) at both end-points NL = 0 and
NR = N leads to the system corresponding to the matrix D
(2)
N+1, N ≥ 2
t00,0t
0
1,1 − t01,0t00,1 =
(
t10,1
)2
, tj0,0t
j
1,1 − t
j
1,0t
j
0,1 = tj−11,0 t
j+1
0,1 , 1 ≤ j ≤ N − 1, (5.19)
tN0,0t
N
1,1 − tN1,0tN0,1 =
(
tN−11,0
)2
.
Write the set of equations (5.13)–(5.18) in the form of a Lax pair for system (5.19). Denote the
eigenvector as follow P = (ψ0, ψ1, . . . , ψN−1, g0, g1, . . . , gN−1)T . Introduce 2N × 2N matrices
A =
t11,0t
0
0,0
t10,0t
0
1,0
−1 0 . . . 0 0 . . . 0
0
t21,0t
1
0,0
t20,0t
1
1,0
−1 . . . 0 0 . . . 0
. . .
(−1)N−1λ 0 . . .
tN1,0t
N−1
0,0
tN0,0t
N−1
1,0
(−1)N
t01,0t
1
−1,0
t00,0t
1
0,0
(−1)N−1
t11,0t
2
−1,0
t10,0t
2
0,0
. . . − tN−1
1,0 tN−1,0
tN−1
0,0 tN0,0
−λ 0 . . . 0
t01,0t
1
−1,0
t00,0t
1
0,0
0 . . . 0
λ 0 . . . 0 − t01,0t
1
−1,0
t00,0t
1
0,0
t11,0t
2
−1,0
t10,0t
2
0,0
. . . 0
. . .
(−1)i+1λ 0 . . . 0 . . . (−1)i−j
tj1,0t
j+1
−1,0
tj0,0t
j+1
0,0
. . . 0
. . .
(−1)Nλ 0 . . . 0 (−1)N−1
t01,0t
1
−1,0
t00,0t
1
0,0
(−1)N
t11,0t
2
−1,0
t10,0t
2
0,0
. . .
tN−1
1,0 tN−1,0
tN−1
0,0 tN0,0
,
B =
1 0 . . . 1
λ
t10,1t
N−1
0,0
t00,1t
N
0,0
1
λ
(t10,1)
2t1−1,0
t00,0t
0
0,1t
1
0,0
1
λ
t10,1t
2
−1,0t
2
0,1
t00,1t
1
0,0t
2
0,0
. . . 1
λ
t10,1t
N
−1,0t
N
0,1
t00,1t
N−1
0,0 tN0,0
t00,0t
2
0,1
t10,0t
1
0,1
1 . . . 0 0 0 . . . 0
. . .
0 . . .
tN−2
0,0 tN0,1
tN−1
0,0 tN−1
0,1
1 0 0 . . . 0
0 . . . 0
t00,0t
N−1
0,0
t1−1,1t
N
0,0
t10,1t
1
−1,0
t10,0t
1
−1,1
t00,0t
2
−1,0t
2
0,1
t1−1,1t
1
0,0t
2
0,0
. . .
t00,0t
N
−1,0t
N
0,1
t1−1,1t
N−1
0,0 tN0,0
0 . . . 0
t10,0t
N−1
0,0
t2−1,1t
N
0,0
0
t2−1,0t
2
0,1
t20,0t
2
−1,1
. . .
t10,0t
N
−1,0t
N
0,1
t2−1,1t
N−1
0,0 tN0,0
. . .
0 . . . 0
(tN−1
0,0 )2
tN−1,1t
N
0,0
0 0 . . .
tN−1,0t
N
0,1
tN0,0t
N
−1,1
.
24 R. Garifullin, I. Habibullin and M. Yangubaeva
It is straightforward to check that the compatibility condition of the equations
P1,0 = AP, P0,1 = BP (5.20)
is equivalent the system (5.19).
Example 5.2. Consider a particular case when NL = 0 and NR = 1
t00,0t
0
1,1 − t01,0t00,1 =
(
t10,1
)2
, t10,0t
1
1,1 − t11,0t10,1 =
(
t01,0
)2
.
The system corresponds to algebra A
(1)
1 . Its Lax pair is given by (5.20) with the matrices
A =
t11,0t
0
0,0
t10,0t
0
1,0
+ λ − t01,0t
1
−1,0
t00,0t
1
0,0
−λ t01,0t
1
−1,0
t00,0t
1
0,0
, B =
1 + 1
λ
t10,1t
0
0,0
t00,1t
1
0,0
1
λ
(t10,1)
2t1−1,0
t00,0t
0
0,1t
1
0,0
(t00,0)
2
t10,0t
1
−1,1
t10,1t
1
−1,0
t10,0t
1
−1,1
.
Example 5.3. If one imposes condition (5.9) for NL = 0 and (5.10) for NR = 2, then
t00,0t
0
1,1 − t01,0t00,1 =
(
t10,1
)2
, t10,0t
1
1,1 − t11,0t10,1 = t01,0t
2
0,1, t20,0t
2
1,1 − t21,0t20,1 =
(
t11,0
)2
.
The Lax pair is of the form (5.20) where A and B are 4× 4 matrices
A =
t11,0t
0
0,0
t10,0t
0
1,0
−1 0 0
−λ t21,0t
1
0,0
t20,0t
1
1,0
t01,0t
1
−1,0
t00,0t
1
0,0
− t11,0t
2
−1,0
t10,0t
2
0,0
−λ 0
t01,0t
1
−1,0
t00,0t
1
0,0
0
λ 0 − t01,0t
1
−1,0
t00,0t
1
0,0
t11,0t
2
−1,0
t10,0t
2
0,0
,
B =
1 1
λ
t10,1t
1
0,0
t00,1t
2
0,0
1
λ
(t10,1)
2t1−1,0
t00,0t
0
0,1t
1
0,0
1
λ
t10,1t
2
−1,0t
2
0,1
t00,1t
1
0,0t
2
0,0
t00,0t
2
0,1
t10,0t
1
0,1
1 0 0
0
t00,0t
1
0,0
t1−1,1t
2
0,0
t10,1t
1
−1,0
t10,0t
1
−1,1
t00,0t
2
−1,0t
2
0,1
t1−1,1t
1
0,0t
2
0,0
0
(t10,0)
2
t2−1,1t
2
0,0
0
t2−1,0t
2
0,1
t20,0t
2
−1,1
.
Remark 5.4. In Example 5.2 we give a Lax pair realized in 2 × 2 matrices, while general
formula (5.20) generates 3 × 3 matrices. The matter is that in the Lax pair obtained directly
from (5.20) we made in this case some additional reduction.
5.2 Lax pair for systems corresponding to the algebras AN
Instead of boundary condition (5.8) we can use also the degenerate boundary conditions of the
form
tNL−1 = 0, tNL = 1 (5.21)
at the left end-point and
tNR+1 = 0, tNR = 1 (5.22)
at the right end-point. The degenerate boundary conditions imply that the corresponding eigen-
functions are zero: gNL−1 = 0 and ψNR = 0.
Affine and Finite Lie Algebras and Integrable Toda Field Equations 25
In order to obtain the system corresponding to the Cartan matrix AN−1 we cut off the Hirota
chain by imposing degenerate boundary conditions (5.21) at the point NL = 0 and (5.22) at
NR = N . The resulting reduction is as follows
t10,0t
1
1,1 − t11,0t10,1 = t20,1, tj0,0t
j
1,1 − t
j
1,0t
j
0,1 = tj−11,0 t
j+1
0,1 , 2 ≤ j ≤ N − 2, (5.23)
tN−10,0 tN−11,1 − tN−11,0 tN−10,1 = tN−21,0 .
In this case our algorithm gives the Lax pair found years ago in [21]. In order to formulate it
introduce the eigenvector P = (ψ0, ψ1, . . . , ψN−1)T and N ×N matrices
U =
t11,0
t10,0
−1 . . . 0 0
0
t21,0t
1
0,0
t20,0t
1
1,0
. . . 0 0
. . .
0 0 . . .
tN−1
1,0 tN−2
0,0
tN−1
0,0 tN−2
1,0
−1
0 0 . . . 0
tN−1
0,0
tN−1
1,0
, V =
1 0 0 . . . 0 0
t20,1
t10,0t
1
0,1
1 0 . . . 0 0
0
t30,1t
1
0,0
t20,0t
2
0,1
1 . . . 0 0
. . .
0 0 . . . 0
tN−2
0,0
tN−1
0,0 tN−1
0,1
1
.
It is easy to check that the compatibility condition of the equations
P1,0 = UP, P0,1 = V P.
leads to the system (5.23).
5.3 Lax pair for systems corresponding to the algebras BN
We impose boundary condition (5.21) for NL = 0 and (5.10) for NR = N . The resulting
reduction is as follows
t10,0t
1
1,1 − t11,0t10,1 = t20,1, tj0,0t
j
1,1 − t
j
1,0t
j
0,1 = tj−11,0 t
j+1
0,1 , 2 ≤ j ≤ N − 1, (5.24)
tN0,0t
N
1,1 − tN1,0tN0,1 =
(
tN−11,0
)2
.
System (5.24) can be rewritten in form of (1.3) by changing the variables tj = e−u
j
. It corre-
sponds to the algebra BN . The system admits a Lax pair. Let us denote P = (ψ0, ψ1, . . . , ψN−1,
g0, g1, . . . , gN−1)T and introduce 2N × 2N matrices
A =
t11,0
t10,0
−1 0 . . . 0 0 . . . 0
0
t21,0t
1
0,0
t20,0t
1
1,0
−1 . . . 0 0 . . . 0
. . .
0 0 . . .
tN1,0t
N−1
0,0
tN0,0t
N−1
1,0
(−1)N
t1−1,0
t10,0
(−1)N−1
t11,0t
2
−1,0
t10,0t
2
0,0
. . . − tN−1
1,0 tN−1,0
tN−1
0,0 tN0,0
0 0 . . . 0
t1−1,0
t10,0
0 . . . 0
0 0 . . . 0 − t1−1,0
t10,0
t11,0t
2
−1,0
t10,0t
2
0,0
. . . 0
. . .
0 0 . . . 0 (−1)N−1
t1−1,0
t10,0
(−1)N
t11,0t
2
−1,0
t10,0t
2
0,0
. . .
tN−1
1,0 tN−1,0
tN−1
0,0 tN0,0
, (5.25)
26 R. Garifullin, I. Habibullin and M. Yangubaeva
B =
1 0 . . . 0 0 0 . . . 0
t20,1
t10,0t
1
0,1
1 . . . 0 0 0 . . . 0
0
t10,0t
3
0,1
t20,0t
2
0,1
. . . 0 0 0 . . . 0
. . .
0 . . .
tN−2
0,0 tN0,1
tN−1
0,0 tN−1
0,1
1 0 0 . . . 0
0 . . . 0
tN−1
0,0
t1−1,1t
N
0,0
t10,1t
1
−1,0
t10,0t
1
−1,1
t2−1,0t
2
0,1
t1−1,1t
1
0,0t
2
0,0
. . .
tN−1,0t
N
0,1
t1−1,1t
N−1
0,0 tN0,0
0 . . . 0
t10,0t
N−1
0,0
t2−1,1t
N
0,0
0
t2−1,0t
2
0,1
t20,0t
2
−1,1
. . .
t10,0t
N
−1,0t
N
0,1
t2−1,1t
N−1
0,0 tN0,0
. . .
0 . . . 0
(tN−1
0,0 )2
tN−1,1t
N
0,0
0 0 . . .
tN−1,0t
N
0,1
tN0,0t
N
−1,1
. (5.26)
Then according to our general scheme the compatibility condition of the equations
P1,0 = AP, P0,1 = BP
leads to the system (5.24).
Remark 5.5. The system BN can be obtained from the system A2N−1 by imposing the cutting
off constraint of the form
tN+1
0,1 = tN−11,0
(see Lemma 5.1 above).
6 Method of finding integrals from Lax representation for
the systems corresponding to the Cartan matrices AN , BN
In this section we show that the Lax pair allows one to generate integrals for the systems
corresponding to the simple Lie algebras AN , BN . Concentrate on m-integrals. Due to the
definition we have two different expression for the shifted eigenvector Pk,1, k ≥ 1
Pk,1 = Vk,0Uk−1,0Uk−2,0 · · ·U1,0U0,0P,
and similarly
Pk,1 = Uk−1,1Uk−2,1 · · ·U1,1U0,1V0,0P.
Comparison of these two formulas yields
Dm(Uk−1,0Uk−2,0 · · ·U1,0U0,0) = Vk,0Uk−1,0Uk−2,0 · · ·U1,0U0,0V
−1
0,0 .
Due to the triangular structure of the matrices Vk,0 and V0,0 the map converting any upper
triangular matrix X to a matrix X̄ = Vk,0XV
−1
0,0 leaves unchanged the element of the matrix X
located at the right upper corner: (X)1,N = X̄1,N . Thus the corresponding element, denote
it through I(k−N) (k > N), of the upper triangular matrix Uk−1,0Uk−2,0 · · ·U1,0U0,0 is an m-
integral. In such a way we get a set of integrals I(1), I(2), . . . , I(N). Examples below show that
they constitute a complete set of m-integrals, however we are not able to prove this fact in
general. In a similar way one can find integrals in the other direction.
Let us illustrate the statement above with the following
Affine and Finite Lie Algebras and Integrable Toda Field Equations 27
Example 6.1. Consider the system (5.23) for N = 3
t10,0t
1
1,1 − t11,0t10,1 = t20,1, t20,0t
2
1,1 − t21,0t20,1 = t11,0.
Recall its Lax pair
P1,0 = UP, P0,1 = V P,
where P = (ψ0, ψ1, ψ2)T and
U =
t11,0
t10,0
−1 0
0
t21,0t
1
0,0
t20,0t
1
1,0
−1
0 0
t20,0
t21,0
, V =
1 0 0
t20,1
t10,0t
1
0,1
1 0
0
t10,0
t20,0t
2
0,1
1
.
Evaluate the elements at the right upper corner for the following two products U2,0U1,0U0,0 and
U3,0U2,0U1,0U0,0 and find two independent m-integrals
I(1) =
t13
t12
+
t11t
2
2
t12t
2
1
+
t20
t21
, I(2) =
t14
t13
I(1) +
t11t
2
3
t13t
2
1
+
t12t
2
0t
2
3
t13t
2
1t
2
2
+
t20
t22
,
where the second index for the variables t1, t2 is omitted. Since the integral I(2) is too complicated
one can choose a more simple one
Ĩ(2) = D−1n
(
I(1)DnI(1) − I(2)
)
=
t10
t11
+
t12t
2
0
t11t
2
1
+
t22
t21
.
By using Theorem 1.2 one can check that integrals I(1) and Ĩ(2) provide a complete set of
integrals.
In a similar way integrals for the system (5.24), corresponding to the algebra BN , are con-
structed. Let us consider a matrix Φ of dimension 2N × 2N
Φ =
(
E11 E12
E21 E22
)
, (6.1)
where E11 is the unity matrix of dimension N , E12, E21 are matrices of dimension N with zero
entries, E22 is a matrix of dimension N with the unity adverse diagonal. By an automorphism
X → ΦXΦ−1 the matrices (5.25) and (5.26) are transformed to the triangular matrices
Ā =
t11,0
t10,0
−1 0 . . . 0 0 . . . 0
0
t21,0t
1
0,0
t20,0t
1
1,0
−1 . . . 0 0 . . . 0
. . .
0 0 . . .
tN1,0t
N−1
0,0
tN0,0t
N−1
1,0
− tN−1
1,0 tN−1,0
tN−1
0,0 tN0,0
tN−2
1,0 tN−1
−1,0
tN−2
0,0 tN−1
0,0
. . . (−1)N
t1−1,0
t10,0
0 0 . . . 0
tN−1
1,0 tN−1,0
tN−1
0,0 tN0,0
− tN−2
1,0 tN−1
−1,0
tN−2
0,0 tN−1
0,0
. . . (−1)N−1
t1−1,0
t10,0
0 0 . . . 0 0
tN−2
1,0 tN−1
−1,0
tN−2
0,0 tN−1
0,0
. . . (−1)N
t1−1,0
t10,0
. . .
0 0 . . . 0 0 0 . . .
t1−1,0
t10,0
,
28 R. Garifullin, I. Habibullin and M. Yangubaeva
B̄ =
1 0 . . . 0 0 0 . . . 0
t20,1
t10,0t
1
0,1
1 . . . 0 0 0 . . . 0
0
t10,0t
3
0,1
t20,0t
2
0,1
. . . 0 0 0 . . . 0
. . .
0 . . .
tN−2
0,0 tN0,1
tN−1
0,0 tN−1
0,1
1 0 0 . . . 0
0 . . . 0
tN−1
0,0
t1−1,1t
N
0,0
tN−1,0t
N
0,1
tN0,0t
N
−1,1
0 . . . 0
0 . . . 0
t10,0t
N−1
0,0
t2−1,1t
N
0,0
tN−2
0,0 tN−1,0t
N
0,1
tN−1
−1,1 t
N−1
0,0 tN0,0
tN−1
−1,0 t
N−1
0,1
tN−1
0,0 tN−1
−1,1
. . . 0
. . .
0 . . . 0
(tN−1
0,0 )2
tN−1,1t
N
0,0
tN−1,0t
N
0,1
t1−1,1t
N−1
0,0 tN0,0
tN−1
−1,0 t
N−1
0,1
t1−1,1t
N−2
0,0 tN−1
0,0
. . .
t10,1t
1
−1,0
t10,0t
1
−1,1
. (6.2)
By an automorphism acting as follows X → F−1XF matrix (6.2) is transformed to a lower
triangular matrix for which all diagonal entries are equal to the unity. Here F is a 2N × 2N
matrix of the form
F =
(
E11 E12
E21 F22
)
,
F22 is a diagonal matrix such that F22 = diag
(
tN0,0
tN−1,0
,
tN−1
0,0
tN−1
−1,0
, . . . ,
t10,0
t1−1,0
)
and Ei,j are defined
in (6.1). Reasonings similar to that of the case AN allow one to derive the integrals.
Example 6.2. Consider the system (5.24) for N = 2
t10,0t
1
1,1 − t11,0t10,1 = t20,1, t20,0t
2
1,1 − t21,0t20,1 =
(
t11,0
)2
.
Recall its Lax pair
P1,0 = AP, P0,1 = BP,
where P = (ψ0, ψ1, g0, g1)T and
A =
t11,0
t10,0
−1 0 0
0
t21,0t
1
0,0
t20,0t
1
1,0
t1−1,0
t10,0
− t11,0t
2
−1,0
t10,0t
2
0,0
0 0
t1−1,0
t10,0
0
0 0 − t1−1,0
t10,0
t11,0t
2
−1,0
t10,0t
2
0,0
, B =
1 0 0 0
t20,1
t10,0t
1
0,1
1 0 0
0
t10,0
t1−1,1t
2
0,0
t10,1t
1
−1,0
t10,0t
1
−1,1
t2−1,0t
2
0,1
t1−1,1t
1
0,0t
2
0,0
0
(t10,0)
2
t2−1,1t
2
0,0
0
t2−1,0t
2
0,1
t20,0t
2
−1,1
.
By an automorphism X → ΦXΦ−1 transform the matrices A and B to the triangular matrices
Ā =
t11,0
t10,0
−1 0 0
0
t21,0t
1
0,0
t20,0t
1
1,0
− t11,0t
2
−1,0
t10,0t
2
0,0
t1−1,0
t10,0
0 0
t11,0t
2
−1,0
t10,0t
2
0,0
− t1−1,0
t10,0
0 0 0
t1−1,0
t10,0
, B̄ =
1 0 0 0
t20,1
t10,0t
1
0,1
1 0 0
0
(t10,0)
2
t2−1,1t
2
0,0
t2−1,0t
2
0,1
t20,0t
2
−1,1
0
0
t10,0
t1−1,1t
2
0,0
t2−1,0t
2
0,1
t1−1,1t
1
0,0t
2
0,0
t1−1,0t
1
0,1
t1−1,1t
1
0,0
. (6.3)
Affine and Finite Lie Algebras and Integrable Toda Field Equations 29
By automorphism X → F−1XF transform the matrices (6.3) to the triangular matrices
 =
t11,0
t10,0
−1 0 0
0
t21,0t
1
0,0
t20,0t
1
1,0
− t11,0
t10,0
1
0 0
t11,0t
2
0,0
t10,0t
2
1,0
− t20,0
t21,0
0 0 0
t10,0
t11,0
, B̂ =
1 0 0 0
t20,1
t10,0t
1
0,1
1 0 0
0
(t10,0)
2
t20,0t
2
0,1
1 0
0
t10,0
t10,1t
2
0,0
t20,1
t10,0t
1
0,1
1
.
Evaluate the elements at the right upper corner for the following products Â2,0Â1,0Â0,0 and
Â3,0Â2,0Â1,0Â0,0 and find two independent m-integrals
I(1) = − t
1
3
t12
− t12t
2
0
t11t
2
1
− t11t
2
2
t12t
2
1
− t10
t11
,
I(2) = − t
1
4
t12
− t11t
2
2t
1
4
t12t
2
1t
1
3
− t11t
2
3
t13t
2
1
− t12t
2
0t
1
4
t11t
2
1t
1
3
− (t12)
2t20t
2
3
t11t
2
1t
1
3t
2
2
− t13t
2
0
t11t
2
2
− t10t
1
4
t11t
1
3
− t10t
1
2t
2
3
t11t
2
2t
1
3
− t10t
1
3t
2
1
t11t
2
2t
1
2
− t10
t12
.
Replace the integral I(2) by a more simple one
Ĩ(2) = I(2) + I(1)DnI(1) =
t20
t21
+
(t11)
2t22
(t12)
2t21
+ 2
t13t
1
1
(t12)
2
+
(t13)
2t21
(t12)
2t22
+
t23
t22
.
Here the second index for the variables t1, t2 is omitted, since its values is zero for all considered
variables. It can be proved by using Theorem 1.2 that integrals I(1) and Ĩ(2) constitute a complete
set of integrals.
7 Periodic boundary conditions
In this section we discuss briefly the well known periodically closed reduction of the Hirota chain
(see for more details and the references [41]). Close the chain (5.1) by imposing the periodical
boundary conditions
t−1 = tN , tN+1 = t0.
Close the Lax pair (5.2) by setting the conditions on the eigenfunctions
ψ−1 = λψN , ψN+1 =
1
λ
ψ0. (7.1)
As a result we get a finite system of the form
t00,0t
0
1,1 − t01,0t00,1 = tN1,0t
1
0,1, tj0,0t
j
1,1 − t
j
1,0t
j
0,1 = tj−11,0 t
j+1
0,1 , 1 ≤ j ≤ N − 1, (7.2)
tN0,0t
N
1,1 − tN1,0tN0,1 = tN−11,0 t00,1,
which is closely connected with the Cartan matrix A
(1)
N .
Boundary conditions (7.1) reduce the sequence of linear discrete equations (5.2) to a Lax pair
for the reduced system (7.2). Introduce the eigenvector P = (ψ0, ψ1, . . . , ψN )T and N+1×N+1
matrices
U =
t00,0t
1
1,0
t01,0t
1
0,0
−1 0 . . . 0
0
t21,0t
1
0,0
t20,0t
1
1,0
−1 . . . 0
0 0
t31,0t
2
0,0
t30,0t
2
1,0
. . . 0
. . .
− 1
λ 0 . . . 0
tN0,0t
0
1,0
tN1,0t
0
0,0
, V =
1 0 . . . 0 λ
t10,1t
N
0,0
t00,0t
0
0,1
t20,1t
0
0,0
t10,0t
1
0,1
1 . . . 0 0
0
t30,1t
1
0,0
t20,0t
2
0,1
. . . 0 0
. . .
0 0 . . .
tN−1
0,0 t00,1
tN0,0t
N
0,1
1
.
30 R. Garifullin, I. Habibullin and M. Yangubaeva
If the functions t0, t1, . . . , tN solve the system (7.2) then the overdetermined system of linear
equations
P1,0 = UP, P0,1 = V P (7.3)
is compatible (see [41]).
Remark 7.1. Note that system (7.2) differs from the system corresponding to the same algeb-
ra A
(1)
N but defined by the formula (1.3).
For example the system (7.2) for N = 2 is of the form
t00,0t
0
1,1 − t01,0t00,1 = t21,0t
1
0,1, t10,0t
1
1,1 − t11,0t10,1 = t01,0t
2
0,1,
t20,0t
2
1,1 − t21,0t20,1 = t11,0t
0
0,1. (7.4)
In terms of the variables u0 = − log t0, u1 = − log t1, u2 = − log t2 it looks like
∆
(
u0
)
= eu
0
1,0+u
0
0,1−u10,1−u21,0 , ∆
(
u1
)
= e−u
0
1,0+u
1
1,0+u
1
0,1−u20,1 ,
∆
(
u2
)
= e−u
0
0,1−u11,0+u21,0+u20,1 , (7.5)
while formula (1.3) gives the system
∆
(
u0
)
= eu
0
1,0+u
0
0,1−u11,0−u21,0 , ∆
(
u1
)
= e−u
0
0,1+u
1
1,0+u
1
0,1−u21,0 ,
∆
(
u2
)
= e−u
0
0,1−u10,1+u21,0+u20,1 .
After permutations n↔ m we get
∆
(
u0
)
= eu
0
1,0+u
0
0,1−u10,1−u20,1 , ∆
(
u1
)
= e−u
0
1,0+u
1
1,0+u
1
0,1−u20,1 ,
∆
(
u2
)
= e−u
0
1,0−u11,0+u21,0+u20,1 . (7.6)
Obviously, systems (7.5) and (7.6) are different.
Let us give also the Lax pair for the system (7.4). Let us consider vector P = (ψ0, ψ1, ψ2)T .
Introduce 3× 3 matrices
U =
t00,0t
1
1,0
t01,0t
1
0,0
−1 0
0
t21,0t
1
0,0
t20,0t
1
1,0
−1
− 1
λ 0
t20,0t
0
1,0
t21,0t
0
0,0
, V =
1 0 λ
t10,1t
2
0,0
t00,0t
0
0,1
t20,1t
0
0,0
t10,0t
1
0,1
1 0
0
t00,1t
1
0,0
t20,0t
2
0,1
1
.
If the functions t0, t1, t2 satisfy the system (7.4) then the equations
P1,0 = UP, P0,1 = V P.
are compatible.
Remark 7.2. The Lax pair (7.3) can be rewritten in terms of the Cartan–Weyl basis of the
algebra A
(1)
N
P1,0 =
(
−Λ + eU1,0−U0,0
)
P, P0,1 =
(
E + eU0,1Λ̄e−U0,0
)
P,
where Λ =
N∑
i=0
fi, Λ̄ =
N∑
i=0
ei, U =
N∑
i=0
uihi, e
−ui = ti,
[hi, hj ] = 0, [ei, fj ] = δijhi, [hi, ej ] = Aijej , [hi, fj ] = −Aijfj ,
and Aij are elements of the Cartan matrix of the algebra A
(1)
N .
Affine and Finite Lie Algebras and Integrable Toda Field Equations 31
8 Conclusions
A map is suggested converting any N ×N matrix A to a finite system of difference-difference
equations of exponential type (see (1.3)). A hypothesis is formulated claiming that if A coin-
cides with the Cartan matrix of a finite or affine Lie algebra then the corresponding system
is integrable. The hypothesis is approved by numerous examples. The systems obtained are
rather simple and elegant. They essentially differ from those studied earlier (see survey [25] and
references therein). For instance, the system corresponding the algebra G2 given in [25] reads as
T (1)
m (u− 1)T (1)
m (u+ 1) = T
(1)
m−1(u)T
(1)
m+1(u) + T
(2)
3m(u),
T
(2)
3m
(
u− 1
3
)
T
(2)
3m
(
u+
1
3
)
= T
(2)
3m−1(u)T
(2)
3m+1(u) + T (1)
m
(
u− 2
3
)
T (1)
m (u)T (1)
m
(
u+
2
3
)
,
T
(2)
3m+1
(
u− 1
3
)
T
(2)
3m+1
(
u+
1
3
)
= T
(2)
3m(u)T
(2)
3m+2(u) + T (1)
m
(
u− 1
3
)
T (1)
m
(
u+
1
3
)
T
(1)
m+1(u),
T
(2)
3m+2
(
u− 1
3
)
T
(2)
3m+2
(
u+
1
3
)
= T
(2)
3m+1(u)T
(2)
3m+3(u) + T (1)
m (u)T
(1)
m+1
(
u− 1
3
)
T
(1)
m+1
(
u+
1
3
)
,
while our formula (1.3) generates G2 system which can be represented as follows
t1n,mt
1
n+1,m+1 − t1n+1,mt
1
n,m+1 = t2n,m+1, t2n,mt
2
n+1,m+1 − t2n+1,mt
2
n,m+1 =
(
t1n+1,m
)3
.
In a recent article by Kimura, Yamashita and Nakamura [23] a new application of conserved
quantities of discrete-time integrable systems to numerical computations is suggested. The
systems studied in the present paper might have applications in such kind numerical methods.
Acknowledgments
The authors are grateful to the referees for their important contribution to improve the article.
This work is partially supported by Russian Foundation for Basic Research (RFBR) grants
11-01-97005-r-povoljie-a, 12-01-31208-mol a and 10-01-00088-a and by Federal Task Program
“Scientific and pedagogical staff of innovative Russia for 2009–2013” contract no. 2012-1.5-12-
000-1003-011.
References
[1] Adler V.E., Bobenko A.I., Suris Y.B., Classification of integrable equations on quad-graphs. The consistency
approach, Comm. Math. Phys. 233 (2003), 513–543, nlin.SI/0202024.
[2] Adler V.E., Startsev S.Y., On discrete analogues of the Liouville equation, Theoret. and Math. Phys. 121
(1999), 1484–1495, solv-int/9902016.
[3] Belavin A.A., Polyakov A.M., Zamolodchikov A.B., Infinite conformal symmetry in two-dimensional quan-
tum field theory, Nuclear Phys. B 241 (1984), 333–380.
[4] Bobenko A.I., Suris Y.B., Integrable systems on quad-graphs, Int. Math. Res. Not. (2002), 573–611,
nlin.SI/0110004.
[5] Bogoyavlensky O.I., On perturbations of the periodic Toda lattice, Comm. Math. Phys. 51 (1976), 201–209.
[6] Corrigan E., Recent developments in affine Toda quantum field theory, in Particles and Fields (Banff, AB,
1994), CRM Ser. Math. Phys., Springer, New York, 1999, 1–34, hep-th/9412213.
http://10.1007/s00220-002-0762-8
http://arxiv.org/abs/nlin.SI/0202024
http://dx.doi.org/10.1007/BF02557219
http://arxiv.org/abs/solv-int/9902016
http://dx.doi.org/10.1016/0550-3213(84)90052-X
http://dx.doi.org/10.1155/S1073792802110075
http://arxiv.org/abs/nlin.SI/0110004
http://dx.doi.org/10.1007/BF01617919
http://arxiv.org/abs/hep-th/9412213
32 R. Garifullin, I. Habibullin and M. Yangubaeva
[7] Date E., Jimbo M., Miwa T., Method for generating discrete soliton equations. II, J. Phys. Soc. Japan 52
(1983), 4125–4131.
[8] Doliwa A., Geometric discretisation of the Toda system, Phys. Lett. A 234 (1997), 187–192,
solv-int/9612006.
[9] Drinfel’d V.G., Sokolov V.V., Lie algebras and equations of Korteweg–de Vries type, J. Math. Sci. 30 (1985),
1975–2036.
[10] Fordy A.P., Gibbons J., Integrable nonlinear Klein–Gordon equations and Toda lattices, Comm. Math.
Phys. 77 (1980), 21–30.
[11] Ganzha E.I., Tsarev S.P., Integration of classical series An, Bn, Cn, of exponential systems, Krasnoyarsk
State Pedagogical University, Krasnoyarsk, 2001.
[12] Garifullin R.N., Gudkova E.V., Habibullin I.T., Method for searching higher symmetries for quad-graph
equations, J. Phys. A: Math. Theor. 44 (2011), 325202, 16 pages, arXiv:1104.0493.
[13] Guryeva A.M., Zhiber A.V., On the characteristic equations of a system of quasilinear hyperbolic equations,
Vestnik UGATU 6 (2005), 26–34.
[14] Habibullin I.T., Characteristic algebras of fully discrete hyperbolic type equations, SIGMA 1 (2005), 023,
9 pages, nlin.SI/0506027.
[15] Habibullin I.T., Discrete chains of the series C, Theoret. and Math. Phys. 146 (2006), 170–182.
[16] Habibullin I.T., Gudkova E.V., Boundary conditions for multidimensional integrable equations, Funct. Anal.
Appl. 38 (2004), 138–148.
[17] Habibullin I.T., Pekan A., Characteristic Lie algebra and the classification of semi-discrete models, Theoret.
and Math. Phys. 151 (2007), 781–790, nlin.SI/0610074.
[18] Habibullin I.T., Zheltukhin K., Yangubaeva M., Cartan matrices and integrable lattice Toda field equations,
J. Phys. A: Math. Theor. 44 (2011), 465202, 20 pages, arXiv:1105.4446.
[19] Habibullin I.T., Zheltukhina N., Sakieva A., Discretization of hyperbolic type Darboux integrable equations
preserving integrability, J. Math. Phys. 52 (2011), 093507, 12 pages, arXiv:1102.1236.
[20] Habibullin I.T., Zheltukhina N., Sakieva A., On Darboux-integrable semi-discrete chains, J. Phys. A: Math.
Theor. 43 (2010), 434017, 14 pages, arXiv:0907.3785.
[21] Hirota R., Discrete two-dimensional Toda molecule equation, J. Phys. Soc. Japan 56 (1987), 4285–4288.
[22] Inoue R., Hikami K., The lattice Toda field theory for simple Lie algebras: Hamiltonian structure and
τ -function, Nuclear Phys. B 581 (2000), 761–775.
[23] Kimura K., Yamashita T., Nakamura Y., Conserved quantities of the discrete finite Toda equation and lower
bounds of the minimal singular value of upper bidiagonal matrices, J. Phys. A: Math. Theor. 44 (2011),
285207, 12 pages.
[24] Kuniba A., Nakanishi T., Suzuki J., Functional relations in solvable lattice models. I. Functional relations
and representation theory, Internat. J. Modern Phys. A 9 (1994), 5215–5266, hep-th/9309137.
[25] Kuniba A., Nakanishi T., Suzuki J., T -systems and Y -systems in integrable systems, J. Phys. A: Math.
Theor. 44 (2011), 103001, 146 pages, arXiv:1010.1344.
[26] Levi D., Yamilov R.I., Generalized symmetry integrability test for discrete equations on the square lattice,
J. Phys. A: Math. Theor. 44 (2011), 145207, 22 pages, arXiv:1011.0070.
[27] Leznov A.N., Savel’ev M.V., Group methods for the integration of nonlinear dynamical systems, Nauka,
Moscow, 1985.
[28] Leznov A.N., Smirnov V.G., Shabat A.B., Internal symmetry group and integrability conditions for two-
dimensional dynamical systems, Theoret. and Math. Phys. 51 (1982), 322–330.
[29] Mikhailov A.V., Integrability of a two-dimensional generalization of the Toda chain, JETP Lett. 30 (1979),
414–418.
[30] Mikhailov A.V., Olshanetsky M.A., Perelomov A.M., Two-dimensional generalized Toda lattice, Comm.
Math. Phys. 79 (1981), 473–488.
[31] Nieszporski M., A Laplace ladder diagram of discrete Laplace-type equations, Theoret. and Math. Phys. 133
(2002), 1576–1584.
[32] Nijhoff F.W., Lax pair for the Adler (lattice Krichever–Novikov) system, Phys. Lett. A 297 (2002), 49–58,
nlin.SI/0110027.
http://dx.doi.org/10.1143/JPSJ.51.4125
http://dx.doi.org/10.1016/S0375-9601(97)00477-5
http://arxiv.org/abs/solv-int/9612006
http://dx.doi.org/10.1007/BF02105860
http://dx.doi.org/10.1007/BF01205037
http://dx.doi.org/10.1007/BF01205037
http://dx.doi.org/10.1088/1751-8113/44/32/325202
http://arxiv.org/abs/1104.0493
http://dx.doi.org/10.3842/SIGMA.2005.023
http://arxiv.org/abs/nlin.SI/0506027
http://dx.doi.org/10.1007/s11232-006-0017-5
http://dx.doi.org/10.1023/B:FAIA.0000034044.01773.dd
http://dx.doi.org/10.1023/B:FAIA.0000034044.01773.dd
http://dx.doi.org/10.1007/s11232-007-0064-6
http://dx.doi.org/10.1007/s11232-007-0064-6
http://arxiv.org/abs/nlin.SI/0610074
http://dx.doi.org/10.1088/1751-8113/44/46/465202
http://arxiv.org/abs/1105.4446
http://dx.doi.org/10.1063/1.3628587
http://arxiv.org/abs/1102.1236
http://dx.doi.org/10.1088/1751-8113/43/43/434017
http://dx.doi.org/10.1088/1751-8113/43/43/434017
http://arxiv.org/abs/0907.3785
http://dx.doi.org/10.1143/JPSJ.56.4285
http://dx.doi.org/10.1016/S0550-3213(00)00265-0
http://dx.doi.org/10.1088/1751-8113/44/28/285207
http://dx.doi.org/10.1142/S0217751X94002119
http://arxiv.org/abs/hep-th/9309137
http://dx.doi.org/10.1088/1751-8113/44/10/103001
http://dx.doi.org/10.1088/1751-8113/44/10/103001
http://arxiv.org/abs/1010.1344
http://dx.doi.org/10.1088/1751-8113/44/14/145207
http://arxiv.org/abs/1011.0070
http://dx.doi.org/10.1007/BF01029257
http://dx.doi.org/10.1007/BF01209308
http://dx.doi.org/10.1007/BF01209308
http://dx.doi.org/10.1023/A:1021159129804
http://dx.doi.org/10.1016/S0375-9601(02)00287-6
http://arxiv.org/abs/nlin.SI/0110027
Affine and Finite Lie Algebras and Integrable Toda Field Equations 33
[33] Novikov S.P., Dynnikov I.A., Discrete spectral symmetries of small-dimensional differential operators and
difference operators on regular lattices and two-dimensional manifolds, Russian Math. Surveys 52 (1997),
1057–1116, math-ph/0003009.
[34] Olshanetsky M.A., Perelomov A.M., Classical integrable finite-dimensional systems related to Lie algebras,
Phys. Rep. 71 (1981), 313–400.
[35] Shabat A.B., Higher symmetries of two-dimensional lattices, Phys. Lett. A 200 (1995), 121–133.
[36] Shabat A.B., Yamilov R.I., Exponential systems of type I and the Cartan matrices, Preprint, Bashkirian
Branch of Academy of Science of the USSR, Ufa, 1981.
[37] Smirnov S.V., Semidiscrete Toda lattices, arXiv:1203.1764.
[38] Suris Y.B., Generalized Toda chains in discrete time, Leningrad Math. J. 2 (1991), 339–352.
[39] Tsuboi Z., Solutions of discretized affine Toda field equations for A
(1)
n , B
(1)
n , C
(1)
n , D
(1)
n , A
(2)
n and D
(2)
n+1,
J. Phys. Soc. Japan 66 (1997), 3391–3398, solv-int/9610011.
[40] Ward R.S., Discrete Toda field equations, Phys. Lett. A 199 (1995), 45–48, solv-int/9502002.
[41] Zabrodin A.V., Hirota’s difference equations, Theoret. and Math. Phys. 113 (1997), 1347–1392,
solv-int/9704001.
http://dx.doi.org/10.1070/RM1997v052n05ABEH002105
http://arxiv.org/abs/math-ph/0003009
http://dx.doi.org/10.1016/0370-1573(81)90023-5
http://dx.doi.org/10.1016/0375-9601(95)00115-J
http://arxiv.org/abs/1203.1764
http://dx.doi.org/10.1143/JPSJ.66.3391
http://arxiv.org/abs/solv-int/9610011
http://dx.doi.org/10.1016/0375-9601(95)00108-F
http://arxiv.org/abs/solv-int/9502002
http://dx.doi.org/10.1007/BF02634165
http://arxiv.org/abs/solv-int/9704001
1 Introduction
1.1 Integrals and symmetries for quad graph systems
2 Systematic approach to the problem of discretization of the Darboux integrable systems
2.1 Explanation of the method with example of Liouville equation
2.2 Application of the algorithm of discretization to the system corresponding to the algebra B2
2.3 Integrals of the systems corresponding to the algebras A2, G2, D3
2.3.1 System corresponding to the algebra A2
2.3.2 System corresponding to the algebra G2
2.3.3 System corresponding to the algebra D3
3 Symmetries of discrete systems
3.1 Generalized symmetries for the system A2
3.2 Evaluation of hyperbolic type symmetries for the system A(1)1
3.3 Hyperbolic type symmetries for the system A(2)2
4 Characteristic m-algebra for the case A2
5 Cutting off constraints for the Hirota equation and discrete Zakharov-Shabat systems
5.1 Lax pair for systems corresponding to the algebras D(2)N, A(1)1
5.2 Lax pair for systems corresponding to the algebras AN
5.3 Lax pair for systems corresponding to the algebras BN
6 Method of finding integrals from Lax representation for the systems corresponding to the Cartan matrices AN, BN
7 Periodic boundary conditions
8 Conclusions
References
|